目标
- 掌握逻辑函数三种常见表现形式之间的关系
- 掌握逻辑代数的基本公式
- 掌握逻辑代数的主要定理
- 掌握逻辑代数的常用公式
- 掌握逻辑函数的代数化简方法
- 熟练掌握逻辑函数的卡诺图化简方法
提纲
- 分配律、德·摩根律、对偶、展开定理、吸收律、包含律
- 逻辑表达式化简
- 卡诺图化简
内容
逻辑函数的三种表现形式
真值表、逻辑表达式、卡诺图
相等
一些定律
仔细看看分配律和德·摩根定理
看似简单,但是用处很大。看看就行了,里边内容都是知道的,只是在做题的时候要反应过来有这么一个定理即可
对偶
只换常量和运算符,其他的不变
注意运算顺序不变2024.2.24复习
展开定理
- 对于 · ,提取出来的xi,正为1(因为是积的运算,所以是xi · 1 = xi),非为0(相反)
- 对于 + ,提取出来的xi,正为0(因为是和的运算,所以是xi + 1 = xi),非为0(相反)
吸收律
其实,这上面的公式都可以推导出来,但是做题的时候不一定能反应过来
包含律
这个公式主要是从逻辑上推导,出现 A·B+~A·B时,B·C=0,因为,A是和B同时出现的,而 ~A是和C同时出现的,但不可能同时出现A和 ~A,所以B和C是不能同时出现的
化简
注意第3个消元,我真的,我哭死。求求了要记住😭😭😭😭
例题
不是一昧地缩减,在算式前期也需要利用公式增加项辅助运算
这个就是包含律,没什么好说的😋😋😋
这个可以多看看,有点绕
看了上面的,这个题感觉还行😊😊😊
也还行
卡诺图化简
老师的建议是记住,那么我还是记住吧🤗🤗🤗
重点在于卡诺图的下标顺序 0——1——3——2 (后面2位是反的,后面的行以此类推)
看文字规则,会发现,根本不知道在讲什么😇😇😇
下面还是看一些例子,帮助理解
不难看出
- 首先,做出完整卡诺图
- 接着,圈起部分极小项(对应左上角要求的表达式)
作业
解
这道题还是有点复杂的,建议好好看看