数字逻辑·逻辑代数【常用公式、化简】

本文深入探讨了逻辑代数的基础,包括分配律、德·摩根定律、对偶原理和各种定理。通过实例展示了逻辑函数的化简方法,如卡诺图化简,强调了在解决实际问题中灵活运用这些概念的重要性。此外,还提醒读者在做题时要能够迅速识别并应用相关定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标

  1. 掌握逻辑函数三种常见表现形式之间的关系
  2. 掌握逻辑代数的基本公式
  3. 掌握逻辑代数的主要定理
  4. 掌握逻辑代数的常用公式
  5. 掌握逻辑函数的代数化简方法
  6. 熟练掌握逻辑函数的卡诺图化简方法

提纲

  • 分配律、德·摩根律、对偶、展开定理、吸收律、包含律
  • 逻辑表达式化简
  • 卡诺图化简

内容

逻辑函数的三种表现形式

真值表、逻辑表达式、卡诺图

相等

在这里插入图片描述

一些定律

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
仔细看看分配律和德·摩根定理
看似简单,但是用处很大。看看就行了,里边内容都是知道的,只是在做题的时候要反应过来有这么一个定理即可

对偶

在这里插入图片描述
只换常量和运算符,其他的不变
在这里插入图片描述
注意运算顺序不变2024.2.24复习

展开定理

在这里插入图片描述

  • 对于 · ,提取出来的xi,正为1(因为是积的运算,所以是xi · 1 = xi),非为0(相反)
  • 对于 + ,提取出来的xi,正为0(因为是和的运算,所以是xi + 1 = xi),非为0(相反)

吸收律

在这里插入图片描述
其实,这上面的公式都可以推导出来,但是做题的时候不一定能反应过来

包含律

在这里插入图片描述
这个公式主要是从逻辑上推导,出现 A·B+~A·B时,B·C=0,因为,A是和B同时出现的,而 ~A是和C同时出现的,但不可能同时出现A和 ~A,所以B和C是不能同时出现的

化简

在这里插入图片描述
注意第3个消元,我真的,我哭死。求求了要记住😭😭😭😭

例题

在这里插入图片描述
不是一昧地缩减,在算式前期也需要利用公式增加项辅助运算
在这里插入图片描述
这个就是包含律,没什么好说的😋😋😋
在这里插入图片描述
这个可以多看看,有点绕
在这里插入图片描述
看了上面的,这个题感觉还行😊😊😊
在这里插入图片描述
也还行

卡诺图化简

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
老师的建议是记住,那么我还是记住吧🤗🤗🤗
重点在于卡诺图的下标顺序 0——1——3——2 (后面2位是反的,后面的行以此类推)
在这里插入图片描述
看文字规则,会发现,根本不知道在讲什么😇😇😇
下面还是看一些例子,帮助理解
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
不难看出

  • 首先,做出完整卡诺图
  • 接着,圈起部分极小项(对应左上角要求的表达式)

作业

在这里插入图片描述

在这里插入图片描述

这道题还是有点复杂的,建议好好看看

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值