电场强度
点电荷电场强度分布
多个点电荷在某点处形成的电场强度
电偶级子的电场强度
电偶极矩的方向——由负指向正
2022.11.06期中复习
例题
主要是E垂直是相互抵消的,所以不计
2022.11.07期中复习
电场强度通量、高斯定理
闭合曲面上的通量
点电荷位于球形高斯面
中心
位于高斯面任意位置
立体角 —— (球)面积/半径的平方——4π,在球内任意一点都是
其他情况
比较简单,如果一条电场线出入是成对的,那么电通量就是0
不是成对的话,一般就是q/ε0
电荷系的电通量
也很好理解,由上文可知:点电荷在曲面外的电通量就是0,那么只用考虑内部的电荷,每个点电荷产生的电通量用上文的公式计算,再积分和 ∫ 即可
总结
高斯定理的应用举例
球面内,根据对称性,易知——内部电场强度=0 ,内部电荷为0,所以电场强度为0
球面外,可以这样理解——将均匀带电球面看作带电点电荷,再运用上文学过的静电场高斯定理,即可知道结果
球体
图同上文的球面,但是球体内部电场强度非0
例1
带电平面 所带 电场强度 —— E=σ/ε0
这道题不必🙅过于深究2ES中的2了,看到题目这样,简单地想到就是对称性,有2个E
电势能
其实,这一页不是很重要,因为后面用不到这个公式😐😐😐
只是知道一下,与路径无关,只与始末位置有关即可
静电场的环路定理
对于闭合回路做功显然为0😶😶😶
这个公式和后面的不太一样,别搞混淆了
电势
注意始末位置
因为沿着电场线的方向,电势逐渐降低,所以初位置--末位置是正数
计算点电荷电场中场点的电势
这个公式其实也好推——因为在上文出现频率极高并且需要掌握的公式是 通量 = q/ε0 = ∫ EdS。由此易知:E=q/4πε0r2 er (其中,er为方向矢量)
故,VA(A的电势)如此
叠加原理
电势是标量,所以无需矢量和,直接相加即可
例题
主要需要注意的是——在半径之内的电场强度为0,所以电势不变,电势差为0。但场强为0,电势不一定为0
注意er·dl为dr
这题主要注意不能选择无限远为0,至于具体怎么判断,就看取无限远时会不会不收敛
电场强度与电势梯度
公式
老师说过的:方向导数是梯度在这个方向上的投影
所以只需记住,E=-电势在这个方向上的投影
例题
注意 << 的使用
这里主要是看看公式的实际用法
练习
选择
证明表达式
- 一开始看到这道题没什么思路,但其实很简单(可能是太久没学物理导致的😮😮)
- 根据题目信息列出相关公式即可
题解
- 题目中有动能,就想到动能定理
- 因为绕圆轨道,想到向心力的公式,再结合一下1中列出的动能定理,所以应该是qE=mv2/2
- 发现题目最后问的v2是不带r的,所以还要找公式(仍然从向心力公式中演变,因为根据题目的信息只能使用这个)
- 结合2中演变的公式,消去r即可
无限长导线的电场强度
这道题先自己看看第1问,相信我,你不会写的🌯🌯🌯2022.11.07期中
电通量矢量
这题不会写,问题主要是不清楚矢量的关系(虽然看了很多,但没用🥫🥫🥫)
- i表示x轴方向,j表示y轴方向
- 所以平面ABCO和平面FGDE的电通量=0
- 平面ABGF和平面OCDE是∥x轴的,所以 i 方向的电通量=0
当dS无法表达时
- 补偿法 上课讲过,在做的时候想到了
- 做题的时候想着用E=1/4π……的那个公式,但是无法表达dS
- 答案给的是用高斯定理,巧妙避免了dS的问题🍖🍖🍖
- 至于为什么用高斯定理求出来的电场强度一直是匀强的,我不理解
高斯定理
别的不说,这道题好好看看,真的要掌握高斯定理的用法
- 取高斯面(r<R)
- 取高斯面(r>R)
与无限长电导线的区别
这题的电场强度没有使用 λ/2πr + λ/2π(R-r)
求电势
- 首先补成完整球面
- 也可以高斯定理先求电场强度,然后用电场强度 Edl 算(结果一样)