离散数学·图的基本概念

写在最前面,题目给的问题如果可以用反证法,那么直接反证法(或者说首先考虑反证法)

定义

在这里插入图片描述

说明

在这里插入图片描述

无向图

在这里插入图片描述
多重集 —— 集合可以出现重复元素

V不能是空集——不能没有结点

圆括号代表没有方向

有向图

在这里插入图片描述
尖括号代表有方向

一些其他图

在这里插入图片描述

零图——有多个点的图(没有一条边)
平凡图——只有一个点的图(没有任何边)

标定图、非标定图、基图

在这里插入图片描述
看看就行

相邻、关联

在这里插入图片描述
注意区分相邻和关联
关联——点与边
相邻——点与点,边与边
环——就是自环后面学习的时候,看到环总是不知道什么意思🍜🍜🍜
有向图方向相同的才是平行边(所以那个紫色的不是平行边)

邻域

对于无向图

在这里插入图片描述
邻域——所有相邻的点组成的集合

顶点的度

在这里插入图片描述

最大度、最小度

在这里插入图片描述
主要看看最大度和最小度

握手定理

在这里插入图片描述

这个很好理解,一条边对应两个点(就有2个度数)
顶点度数和=边数的2倍

问题

在这里插入图片描述
在这里插入图片描述

反证法

简单图、正则图

在这里插入图片描述
无向简单图,最大度△≤n-1发现用得还是挺多的
==无向简单图,最小度δ+1≤n

性质

在这里插入图片描述
Kn边数有涉及到稍微看一看即可2023.2.11复习

度数列

在这里插入图片描述

可图化、可简单化

在这里插入图片描述
可图化要求满足握手定理2023.2.11复习
可简单图化还要满足有偶数个奇数

定理

在这里插入图片描述

可图化要求度数总和为偶数

Havel定理

在这里插入图片描述

  • 度数列是有顺序的 从大到小 排列
  • 最大的度数不能超过 n-1
  • 如果dd1+1与dn是同一个的话,在d’中是取dd1+1-1
  • 如果看不出来,就一直递归,直到度数列首项出现0(意味着可简单图化)若出现负数,则不能简单图化度数列全为0时,可简单图化

havel定理的算法(辅助理解)

bool figure::Havel() {
	for (int i = sizeof(point_d) - 1; i >= 0; --i) {
		sort(point_d, point_d + i + 1);
		if (!point_d[i]) break;
		for (int j = i - 1; j >= 0 && point_d[i]; --j) {
			--point_d[j], --point_d[i];                  //这里比较关键,i对应的是最大的数,如果j对应的后面的数不能使最大的数减为0,就说明一定存在平行边
			if (point_d[j] < 0)return false;
		}
		if (point_d[i] > 0) return false;
	}
	return true;
}

havel定理适用于无向图
havel定理要从小到大排序

子图

在这里插入图片描述
子图——点集、边集是原图的子集
注意看一下生成子图、导出子图
生成子图:

  • 点集=母图的点集

导出子图:

  • 由边导出的子图,给出一些边,根据这些边在母图中的关联关系得到点集
  • 由点导出的子图反之

补图

在这里插入图片描述
补图——与原图合并起来就是 完全图
自补图 —— 补图与自身相同

相对补图

在这里插入图片描述
补图 不同的是,是给出2个图,用最大的图减去小图(减去的包括边和点),得到的图就是 相对补图

图的同构

在这里插入图片描述
定义,这部分先别硬看了,难以理解
先看例子

在这里插入图片描述
简而言之——形状可以随意变化,但是点与边的关联,点与点的相邻不可以变
在这里插入图片描述
在这里插入图片描述

Ramsey问题(拉姆齐问题)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值