逻辑函数的化简

本文介绍了逻辑函数的化简方法,包括并项法、吸收法、消去法和配项法,以及如何运用卡诺图进行化简,通过真值表和标准与或式来填写卡诺图,利用相邻性和化简规律以减少逻辑门的数量,提高电路的可靠性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一个逻辑函数可以写成不同的表达式形式,表达式越简单,所表示的逻辑关系越明显。化简逻辑函数的目的,就是为了降低系统的成本,提高电路的可靠性,以用最少的逻辑门实现逻辑函数。

1.公式法化简

  • 并项法

运用  AB+AB'=A(B+B')=A  ;可以消去一个变量。

例如:Y= ABC+ABC' = AB

  •  吸收法

运用  A+AB=A(1+B)=A AB+A'C+BC=AB+A'C

例如:Y=(AB)'+A'D+B'E =A'+B'+A'D+B'E = A'+B' = (AB)'

  • 消去法

运用  A+A'B=A+B  或  A'+AB=A'+B

例如:Y1=A'+AB+B'C = A'+B+B'C = A'+B+C

  • 配项法

将函数某一项乘(或)A+A'=1,将一项变两项。或利用 AB+A'C+BC=AB+A'C

例如:Y=AB'+A'B+BC'+B'C = AB'+A'B+BC'+B'C+A'C = AB'+BC'+A'C

 

试将以上几点综合运用:

Y1=AD+AD'+AB+A'C+BD+ACEF+B'E'+DEF

    = A(1+B+CEF)+A'C+BD+B'E+DEF

    =A+A'C+BD+B'E+DEF

    = A+C+BD+B'E+DEF

    = A+C+BD+B'E;

Y2=AC+A'D+B'D+BC'

    =AC+BC'+(AB)'D+AB

    =AC+BC'+D

 


2.逻辑函数的卡诺图化简

  • 卡诺图

相邻最小项:两个最小项中只有一个互为反变量,其余变量相同,简称:相邻项。相邻项可合并为一项。

卡诺图的组成及特点

①  n个变量的卡诺图由2^n个小方格组成,每个小方格代表一个最小项,按照循环码(格雷码)的编码顺序排列。

②  变量的坐标值0表示相应变量的反变量,1表示相应变量的原变量(且该坐标值使该方格对应的最小项取1),当你将卡诺图中所有的1方格对应的最小项直接相加时,你确实可以得到一个逻辑表达式,但这个表达式往往不是最简的。

③  卡诺图上处在相邻、相对(即同行或同列的两端)位置的小方格所代表的最小项为相邻最小项。可以从图形上直观地找出相邻最小项。两个相邻最小项可以合并为一个与项并消去一个变量。

二变量卡诺图

186330dfa1964911ad315e3b72af80d4.jpg

 

三变量卡诺图

8daafacc80be4a8585c34bc715decc86.jpg

 

 

四变量卡诺图

 

448a355b65af4fee8e088ece044f74ee.jpg

 

 

  • 用卡诺图表示逻辑函数

基本步骤:

(1)求逻辑函数的真值表,标准与或式 或 一般表达式;

(2)根据变量个数画卡诺图;

(3)根据真值表,标准与或式 或 一般表达式 填写卡诺图;

真值表:找到表中为 “ Y=1 ” 的最小项,在卡诺图相应方格中填 “1” ,其余不填。(卡诺图其实就是一个变相的真值表。)

ABCY
0001
0010
0101
0110
1001
1010
1101
1110

例如将此真值表转换为卡诺图

 

1886d1a441fc43728ff188c8c838a951.jpeg

 

 

 对标准与或式:将式中最小项对应方格填 “1” ,其余不填。

 对非标准与或式:找到交集,满足交集的部分全部填 “1”。例如Y=AB+A'D+BC'D,当AB=1时,即A=1,B=1,找到满足A=1,B=1的全部格子,填上“1”。对于后两项A'D,BC'D同样方法。对应卡诺图如下所示:

1737d3b1f3164a9c9c711ba758cd9926.jpeg

 

  •  用卡诺图化简逻辑函数

化简依据:用卡诺图化简逻辑函数式,其原理是利用卡诺图的相邻性,对相邻最小项进行合并,消去互反变量,达到化简的目的。

化简规律

(1)填写卡诺图

(2)画卡诺圈,将相邻相对的“1”得方格按2^n(1、2、4、……)个 圈为一组,直到所有“1”被圈完;圈越大,消去的变量越多,与项越简单,能画入大圈就不画入小圈;圈数越少越好,化简后的与项就越少;一个最小项可以重复使用,即只要需要,一个方格可以同时被多圈所圈;一个圈中的小方格至少有一个小方格不为其它圈所圈;

(3)将各卡诺图分别化简(找到变量在圈中对应的全部逻辑值,若逻辑值一直不变,则保留;反之则消去。一直为0则为反变量形式、为1则为原变量形式。),然后相加(相或);

c384d49809784c358f8fbe84e4d8c905.jpeg

特殊情况:当0方格(空格)很少的时候,可使用圈 “0” 来求出原函数的反函数,再来求原函数的方法。

例如:

ce78792427474a348c237321d3b5fb44.jpeg

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值