一个逻辑函数可以写成不同的表达式形式,表达式越简单,所表示的逻辑关系越明显。化简逻辑函数的目的,就是为了降低系统的成本,提高电路的可靠性,以用最少的逻辑门实现逻辑函数。
1.公式法化简
-
并项法
运用 AB+AB'=A(B+B')=A ;可以消去一个变量。
例如:Y= ABC+ABC' = AB
-
吸收法
运用 A+AB=A(1+B)=A 和 AB+A'C+BC=AB+A'C
例如:Y=(AB)'+A'D+B'E =A'+B'+A'D+B'E = A'+B' = (AB)'
-
消去法
运用 A+A'B=A+B 或 A'+AB=A'+B
例如:Y1=A'+AB+B'C = A'+B+B'C = A'+B+C
-
配项法
将函数某一项乘(或)A+A'=1,将一项变两项。或利用 AB+A'C+BC=AB+A'C
例如:Y=AB'+A'B+BC'+B'C = AB'+A'B+BC'+B'C+A'C = AB'+BC'+A'C
试将以上几点综合运用:
Y1=AD+AD'+AB+A'C+BD+ACEF+B'E'+DEF
= A(1+B+CEF)+A'C+BD+B'E+DEF
=A+A'C+BD+B'E+DEF
= A+C+BD+B'E+DEF
= A+C+BD+B'E;
Y2=AC+A'D+B'D+BC'
=AC+BC'+(AB)'D+AB
=AC+BC'+D
2.逻辑函数的卡诺图化简
-
卡诺图
相邻最小项:两个最小项中只有一个互为反变量,其余变量相同,简称:相邻项。相邻项可合并为一项。
卡诺图的组成及特点:
① n个变量的卡诺图由2^n个小方格组成,每个小方格代表一个最小项,按照循环码(格雷码)的编码顺序排列。
② 变量的坐标值0表示相应变量的反变量,1表示相应变量的原变量(且该坐标值使该方格对应的最小项取1),当你将卡诺图中所有的1方格对应的最小项直接相加时,你确实可以得到一个逻辑表达式,但这个表达式往往不是最简的。
③ 卡诺图上处在相邻、相对(即同行或同列的两端)位置的小方格所代表的最小项为相邻最小项。可以从图形上直观地找出相邻最小项。两个相邻最小项可以合并为一个与项并消去一个变量。
二变量卡诺图:
三变量卡诺图:
四变量卡诺图:
-
用卡诺图表示逻辑函数
基本步骤:
(1)求逻辑函数的真值表,标准与或式 或 一般表达式;
(2)根据变量个数画卡诺图;
(3)根据真值表,标准与或式 或 一般表达式 填写卡诺图;
对真值表:找到表中为 “ Y=1 ” 的最小项,在卡诺图相应方格中填 “1” ,其余不填。(卡诺图其实就是一个变相的真值表。)
A | B | C | Y |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
例如将此真值表转换为卡诺图
对标准与或式:将式中最小项对应方格填 “1” ,其余不填。
对非标准与或式:找到交集,满足交集的部分全部填 “1”。例如Y=AB+A'D+BC'D,当AB=1时,即A=1,B=1,找到满足A=1,B=1的全部格子,填上“1”。对于后两项A'D,BC'D同样方法。对应卡诺图如下所示:
-
用卡诺图化简逻辑函数
化简依据:用卡诺图化简逻辑函数式,其原理是利用卡诺图的相邻性,对相邻最小项进行合并,消去互反变量,达到化简的目的。
化简规律:
(1)填写卡诺图
(2)画卡诺圈,将相邻相对的“1”得方格按2^n(1、2、4、……)个 圈为一组,直到所有“1”被圈完;圈越大,消去的变量越多,与项越简单,能画入大圈就不画入小圈;圈数越少越好,化简后的与项就越少;一个最小项可以重复使用,即只要需要,一个方格可以同时被多圈所圈;一个圈中的小方格至少有一个小方格不为其它圈所圈;
(3)将各卡诺图分别化简(找到变量在圈中对应的全部逻辑值,若逻辑值一直不变,则保留;反之则消去。一直为0则为反变量形式、为1则为原变量形式。),然后相加(相或);
特殊情况:当0方格(空格)很少的时候,可使用圈 “0” 来求出原函数的反函数,再来求原函数的方法。
例如: