概率统计·随机变量的数字特征【数学期望、方差】

from now on 我要开始做一些改变,概率的日常回顾我会比较简洁高效,更加追求效率和速度(因为之前回顾繁琐地写了一大堆,期中复习的时候也是大致看看,而且很多现在看来很简单没必要,所以决定从一开始就做好简洁)

一些随机变量的数学期望

离散型

在这里插入图片描述

简而言之——取值*其相应的概率
要求绝对收敛(希望你还会🥚🥚🥚)——给期望加上绝对值,观察是否仍然收敛
不满足绝对收敛的话,说明期望不存在

泊松分布

在这里插入图片描述

直接记结论—— 期望是λ
泊松分布是离散型的

二项分布

在这里插入图片描述
中学时学过

连续型

在这里插入图片描述
同样要求绝对收敛
取值 * 相应的概率

均匀分布

在这里插入图片描述
均匀分布的期望是区间中点
其实,这些特殊的分布的期望没记住也没什么关系,因为可以根据连续(离散)型分布的期望计算公式推导出来,最多就是做题稍微慢一点(但毕竟大学不似高中有那么多刷题时间,这还不是专业课)

随机变量函数的数学期望

在这里插入图片描述

将Y换成带x的函数代入——before:xf(x),present:g(x)f(x)

二维

在这里插入图片描述

二维同理
当然以上,都有一个premise:绝对收敛

性质

在这里插入图片描述

第4条是充分条件(不是必要)

方差

在这里插入图片描述

注意划线部分,不要会公式之后,就不记得原式的表达
表示偏移程度,每个x-E(x)的平方,再求期望

计算

在这里插入图片描述

利用公式计算用得很少
用得多是用公式计算—— 平方的期望-期望的平方

特殊的

在这里插入图片描述

性质

在这里插入图片描述

  • 没有乘法的
  • 看看第3点
  • 第4点不是第1点的逆—— 因为在连续型中,单个常数的概率是1。也好理解,当D(x)=0时,每个x相对期望的偏移=0,consequently,a=E(x)
  • E(x)是常数—— E(x)得到的结果与x无关

在这里插入图片描述

正态分布的性质

在这里插入图片描述
相互之间:加法

切比雪夫不等式

在这里插入图片描述

如果知道确切的分布,就不必这样估算概率了

当概率分布未知,已知期望和方差,可以用切比雪夫不等式来估计取值随机点与期望的偏差 即距离 超过的概率

练习

一维乘以二维,求期望

在这里插入图片描述
在这里插入图片描述

这道题主要是注意随机变量函数是二维,但是所求期望是一维时,也是直接将一维*二维

求方差

在这里插入图片描述
在这里插入图片描述
这道题,求方差处,不应该用D(X+Y)=D(X)+D(Y)+2E……的方法(这样会多算几个方差,更难写)个人认为:应该要题目中给出相互独立的条件,才会用到D(X+Y)=D(X)+D(Y)的性质,不然基本上都会让算式更加复杂

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值