正交化方法
设
R
n
R^n
Rn 中线性无关组
a
1
,
a
2
,
a
3
,
…
,
a
n
a_1,a_2,a_3,\dots,a_n
a1,a2,a3,…,an,令
β
1
=
α
1
β
2
=
α
2
−
[
α
2
β
1
]
∣
∣
β
1
∣
∣
β
1
β
3
=
α
3
−
[
α
3
β
1
]
∣
∣
β
1
∣
∣
β
1
−
[
α
3
β
2
]
∣
∣
β
2
∣
∣
β
2
β
n
=
α
3
−
[
α
n
β
1
]
∣
∣
β
1
∣
∣
β
1
−
⋯
−
[
α
n
β
n
−
1
]
∣
∣
β
n
−
1
∣
∣
β
n
−
1
\begin{aligned} & \beta_1 = \alpha_1 \\ & \beta_2 = \alpha_2 - {\frac{[\alpha_2\beta_1]}{||\beta_1||}} \beta_1 \\ & \beta_3 = \alpha_3 - {\frac{[\alpha_3\beta_1]}{||\beta_1||}} \beta_1 - {\frac{[\alpha_3\beta_2]}{||\beta_2||}} \beta_2 \\ & \beta_n = \alpha_3 - {\frac{[\alpha_n\beta_1]}{||\beta_1||}} \beta_1 - \cdots - {\frac{[\alpha_n\beta_{n-1}]}{||\beta_{n-1}||}} \beta_{n-1} \end{aligned}
β1=α1β2=α2−∣∣β1∣∣[α2β1]β1β3=α3−∣∣β1∣∣[α3β1]β1−∣∣β2∣∣[α3β2]β2βn=α3−∣∣β1∣∣[αnβ1]β1−⋯−∣∣βn−1∣∣[αnβn−1]βn−1
该方法称为施密特正交化(Gram–Schmidt process
)
[
x
,
y
]
[x, y]
[x,y] 为向量的内积,
∣
∣
x
∣
∣
=
[
x
,
x
]
||x||=[x,x]
∣∣x∣∣=[x,x]
[
x
,
y
]
=
x
1
y
1
+
x
2
y
2
+
⋯
+
x
n
y
n
[x, y] = x_1y_1 + x_2y_2 + \cdots + x_ny_n
[x,y]=x1y1+x2y2+⋯+xnyn
示例
将向量组
α
1
=
(
1
,
1
,
0
,
0
)
T
,
α
2
=
(
1
,
0
,
1
,
0
)
T
α
3
=
(
−
1
,
0
,
0
,
1
)
T
,
α
4
=
(
1
,
−
1
,
−
1
,
1
)
T
\begin{align} & \alpha_1=(1,1,0,0)^T,\alpha_2=(1,0,1,0)^T \\ & \alpha_3=(-1,0,0,1)^T,\alpha_4=(1,-1,-1,1)^T \\ \end{align}
α1=(1,1,0,0)T,α2=(1,0,1,0)Tα3=(−1,0,0,1)T,α4=(1,−1,−1,1)T
标准正交化
解: 先正交化
β
1
=
(
1
,
1
,
0
,
0
)
T
β
2
=
(
1
,
0
,
1
,
0
)
T
−
1
2
(
1
,
1
,
0
,
0
)
T
=
1
2
(
1
,
−
1
,
2
,
0
)
T
β
3
=
(
−
1
,
0
,
0
,
1
)
T
+
1
2
(
1
,
1
,
0
,
0
)
T
+
1
6
(
1
,
−
1
,
2
,
0
)
T
=
1
3
(
−
1
,
1
,
1
,
3
)
T
β
4
=
(
1
,
−
1
,
−
1
,
1
)
T
−
0
−
0
−
0
=
(
1
,
−
1
,
−
1
,
1
)
T
\begin{aligned} & \beta_1 =(1,1,0,0)^T \\ & \beta_2 = (1,0,1,0)^T-\frac{1}{2}(1,1,0,0)^T = \frac{1}{2}(1,-1,2,0)^T \\ & \beta_3 = (-1,0,0,1)^T + \frac{1}{2}(1,1,0,0)^T + \frac{1}{6}(1,-1,2,0)^T = \frac{1}{3}(-1,1,1,3)^T \\ & \beta_4 = (1,-1,-1,1)^T-0-0-0=(1,-1,-1,1)^T \end{aligned}
β1=(1,1,0,0)Tβ2=(1,0,1,0)T−21(1,1,0,0)T=21(1,−1,2,0)Tβ3=(−1,0,0,1)T+21(1,1,0,0)T+61(1,−1,2,0)T=31(−1,1,1,3)Tβ4=(1,−1,−1,1)T−0−0−0=(1,−1,−1,1)T
再标准化
β
1
=
1
2
(
1
,
1
,
0
,
0
)
T
β
2
=
1
6
(
1
,
−
1
,
2
,
0
)
T
β
3
=
1
2
3
(
−
1
,
1
,
1
,
3
)
T
β
4
=
1
2
(
1
,
−
1
,
−
1
,
1
)
T
\begin{aligned} & \beta_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & \beta_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & \beta_3 = \frac{1}{2\sqrt3} (-1,1,1,3)^T \\ & \beta_4 = \frac{1}{2} (1,-1,-1,1)^T \end{aligned}
β1=21(1,1,0,0)Tβ2=61(1,−1,2,0)Tβ3=231(−1,1,1,3)Tβ4=21(1,−1,−1,1)T
矩阵正交化
A = ( 0 1 1 − 1 1 0 − 1 1 1 − 1 0 1 − 1 1 1 0 ) A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \\ \end{pmatrix} A= 011−110−111−101−1110
求一正交矩阵 P P P,使 P T A P P^{T}AP PTAP 成对角形。
解:
∣
A
−
λ
E
∣
=
∣
−
λ
1
1
−
1
1
−
λ
−
1
1
1
−
1
−
λ
1
−
1
1
1
−
λ
∣
=
∣
1
−
λ
1
−
λ
1
−
λ
1
−
λ
1
−
λ
−
1
1
1
−
1
−
λ
1
−
1
1
1
−
λ
∣
=
(
1
−
λ
)
∣
1
1
1
1
1
−
λ
−
1
1
1
−
1
−
λ
1
−
1
1
1
−
λ
∣
=
(
1
−
λ
)
∣
1
1
1
1
0
−
λ
−
1
−
2
0
0
−
2
−
λ
−
1
0
0
2
2
1
−
λ
∣
=
(
1
−
λ
)
2
(
λ
2
+
2
λ
−
3
)
=
(
λ
−
1
)
3
(
λ
+
3
)
\begin{aligned} & |A-\lambda E| ~=~ \begin{vmatrix}-\lambda & 1 & 1 & -1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ \begin{vmatrix} 1-\lambda & 1-\lambda & 1-\lambda & 1-\lambda \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} \\\\\\ & =~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -\lambda-1 & -2 & 0 \\ 0 & -2 & -\lambda-1 & 0 \\ 0 & 2 & 2 & 1-\lambda \\ \end{vmatrix} \\\\\\\ & =~ (1-\lambda)^2(\lambda^2+2\lambda-3) = (\lambda-1)^3(\lambda+3) \end{aligned}
∣A−λE∣ =
−λ11−11−λ−111−1−λ1−111−λ
=
1−λ11−11−λ−λ−111−λ−1−λ11−λ11−λ
= (1−λ)
111−11−λ−111−1−λ1111−λ
= (1−λ)
10001−λ−1−221−2−λ−121001−λ
= (1−λ)2(λ2+2λ−3)=(λ−1)3(λ+3)
求得 λ 1 = λ 2 = λ 3 = 1 , λ 4 = − 3 \large \lambda_1=\lambda_2=\lambda_3=1, \lambda_4=-3 λ1=λ2=λ3=1,λ4=−3 ,
把
λ
1
=
1
\lambda_1=1
λ1=1 (3重)带入齐次方程组,得
A
−
E
=
(
−
1
1
1
−
1
1
−
1
−
1
1
1
−
1
−
1
1
−
1
1
1
−
1
)
=
(
1
−
1
−
1
1
0
0
0
0
0
0
0
0
0
0
0
0
)
A - E = \begin{pmatrix}-1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\-1 & 1 & 1 & -1 \\ \end{pmatrix}= \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix}
A−E=
−111−11−1−111−1−11−111−1
=
1000−1000−10001000
{
x
1
=
x
2
+
x
3
−
x
4
x
2
=
x
2
x
3
=
x
3
x
4
=
x
4
=
>
x
2
(
1
1
0
0
)
+
x
3
(
1
0
1
0
)
+
x
4
(
−
1
0
0
1
)
\begin{cases} x_1 = x_2 + x_3 - x_4 \\ x_2 = x_2 \\ x_3 = ~~~~~~~~~x_3 \\ x_4 = ~~~~~~~~~~~~~~~~~~x_4 \\ \end{cases} => x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}+ x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}
⎩
⎨
⎧x1=x2+x3−x4x2=x2x3= x3x4= x4=>x2
1100
+x3
1010
+x4
−1001
得出基础解系
ζ
1
,
ζ
2
,
ζ
3
\zeta_1,\zeta_2,\zeta_3
ζ1,ζ2,ζ3 ,
ζ
1
=
(
1
1
0
0
)
,
ζ
2
=
(
1
0
1
0
)
,
ζ
3
=
(
−
1
0
0
1
)
\zeta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \zeta_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \zeta_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}
ζ1=
1100
,ζ2=
1010
,ζ3=
−1001
将
ζ
1
,
ζ
2
,
ζ
3
\zeta_1,\zeta_2,\zeta_3
ζ1,ζ2,ζ3 正交化 : 取
η
1
=
ζ
1
\eta_1 = \zeta_1
η1=ζ1,
η
2
=
ζ
2
−
[
η
1
,
ζ
2
]
∣
∣
η
1
∣
∣
η
1
=
(
1
0
1
0
)
−
1
2
(
1
1
0
0
)
=
1
2
(
1
−
1
2
0
)
η
3
=
ζ
3
−
[
η
3
,
ζ
1
]
∣
∣
η
1
∣
∣
η
1
−
[
η
3
,
ζ
2
]
∣
∣
η
2
∣
∣
η
2
=
(
−
1
0
0
1
)
+
1
2
(
1
1
0
0
)
+
1
6
(
1
−
1
2
0
)
=
1
3
(
−
1
1
1
3
)
\begin{aligned} & \eta_2 = \zeta_2 - \frac{[\eta_1,\zeta_2]}{||\eta_1||}\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}- \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} \\ & \eta_3 = \zeta_3 - \frac{[\eta_3,\zeta_1]}{||\eta_1||}\eta_1- \frac{[\eta_3,\zeta_2]}{||\eta_2||}\eta_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 3 \end{pmatrix} \end{aligned}
η2=ζ2−∣∣η1∣∣[η1,ζ2]η1=
1010
−21
1100
=21
1−120
η3=ζ3−∣∣η1∣∣[η3,ζ1]η1−∣∣η2∣∣[η3,ζ2]η2=
−1001
+21
1100
+61
1−120
=31
−1113
将
η
1
,
η
2
,
η
3
\eta_1,\eta_2,\eta_3
η1,η2,η3 单位化求得
p
1
,
p
2
,
p
3
p_1,p_2,p_3
p1,p2,p3
p
1
=
1
2
(
1
,
1
,
0
,
0
)
T
p
2
=
1
6
(
1
,
−
1
,
2
,
0
)
T
p
3
=
1
12
(
−
1
,
1
,
1
,
3
)
T
\begin{aligned} & p_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & p_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & p_3 = \frac{1}{\sqrt{12}} (-1,1,1,3)^T \end{aligned}
p1=21(1,1,0,0)Tp2=61(1,−1,2,0)Tp3=121(−1,1,1,3)T
把
λ
4
=
−
3
\lambda_4=-3
λ4=−3 带入齐次方程组,得
A
+
3
E
=
(
3
1
1
−
1
1
3
−
1
1
1
−
1
3
1
−
1
1
1
3
)
=
(
1
0
0
−
1
0
1
0
1
0
0
1
1
0
0
0
0
)
A + 3E = \begin{pmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\-1 & 1 & 1 & 3 \\ \end{pmatrix}= \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix}
A+3E=
311−113−111−131−1113
=
100001000010−1110
{
x
1
=
x
4
x
2
=
−
x
4
x
3
=
−
x
4
x
4
=
x
4
=
>
x
4
(
1
−
1
−
1
1
)
\begin{cases} x_1 = x_4 \\ x_2 = -x_4 \\ x_3 = -x_4 \\ x_4 = x_4 \\ \end{cases} => x_4 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}
⎩
⎨
⎧x1=x4x2=−x4x3=−x4x4=x4=>x4
1−1−11
得出基础解系
ζ
4
\zeta_4
ζ4,
ζ
4
=
(
1
−
1
−
1
1
)
\zeta_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}
ζ4=
1−1−11
将
ζ
4
\zeta_4
ζ4 单位化,得
p
4
p_4
p4,
p
4
=
1
2
(
1
,
−
1
,
−
1
,
1
)
T
p_4 = \frac{1}{2} (1,-1,-1,1)^T
p4=21(1,−1,−1,1)T
将
p
1
,
p
2
,
p
3
,
p
4
p_1,p_2,p_3,p_4
p1,p2,p3,p4 构成正交矩阵
P
P
P
P
=
(
p
1
,
p
2
,
p
3
,
p
4
)
=
(
1
2
1
6
−
1
12
1
2
1
2
−
1
6
1
12
−
1
2
0
2
6
1
12
−
1
2
0
0
3
12
1
2
)
P = (p_1,p_2,p_3,p_4) = \begin{pmatrix} \frac{1}{\sqrt2} & \frac{1}{\sqrt6} & -\frac{1}{\sqrt{12}} & \frac{1}{2} \\ \frac{1}{\sqrt2} & -\frac{1}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & \frac{2}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & 0 & \frac{3}{\sqrt{12}} & \frac{1}{2} \\ \end{pmatrix}
P=(p1,p2,p3,p4)=
21210061−61620−12112112112321−21−2121
有
P
T
A
P
=
(
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
−
3
)
P^{T}AP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \\ \end{pmatrix}
PTAP=
100001000010000−3