DCGAN的学习笔记

1 生成对抗网络 – Generative Adversarial Networks | GAN

GAN生成对抗网络,该框架可以教会一个深度学习模型来捕捉训练数据分布,并生成具有同分布的相同数据。GAN最早由lan Goodfellow在2014年首次提出。

GAN的主要应用目标:生成式任务(生成、重建、超分辨率、风格迁移、补全、上采样等)

GAN的核心思想:生成器G和判别器D的一代代博弈

生成器:生成网络,通过输入生成图像

判别器:二分类网络,将生成器生成图像作为负样本,真实图像作为正样本

learn 判别器D:给定G,通过G生成图像产生负样本,并结合真实图像作为正样本来训练D

learn 生成器G:给定D,以使得D对G生成图像的评分尽可能接近正样本作为目标来训练G

G和D的训练过程交替进行,这个对抗的过程使得G生成的图像越来越逼真,D“打假”的能力也越来越强。

2 深度卷积生成对抗网络 – Deep Convolution Generative Adversarial Networks | DCGAN

2.1 DCGAN简介

DCGAN是将CNN与GAN的一种结合。 其将卷积网络引入到生成式模型当中来做无监督的训练,利用卷积网络强大的特征提取能力来提高生成网络的学习效果。早期的GAN在图像上仅局限MNIST这样的简单数据集中,DCGAN使GAN在图像生成任务上的效果大大提升。

DCGAN的原理和GAN对抗生成是一样的,它只是把GAN的G和D换成了两个卷积神经网络(CNN)。
在这里插入图片描述

模型结构:

  • 取消所有pooling层。G网络中使用转置卷积(transposed convolutional layer)进行上采样,D网络中用加入stride的卷积代替pooling。
  • 除了生成器模型的输出层和判别器模型的输入层,在网络其它层上都使用了Batch Normalization,使用BN可以稳定学习,有助于处理初始化不良导致的训练问题。
  • 去掉全连接层,使网络变为全卷积网络
  • G网络中使用ReLU作为激活函数,最后一层使用tanh
  • D网络中使用LeakyReLU作为激活函数

2.2 Batch normalization

上述Batch normalization(批标准化)和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法。
随着网络的深度增加,每层特征值分布会逐渐的向激活函数的输出区间的上下两端(激活函数饱和区间)靠近,这样继续下去就会导致梯度消失。BN就是通过方法将该层特征值分布重新拉回标准正态分布,特征值将落在激活函数对于输入较为敏感的区间,输入的小变化可导致损失函数较大的变化,使得梯度变大,避免梯度消失,同时也可加快收敛。
在这里插入图片描述

在神经网络中, 数据分布对训练会产生影响. 比如某个神经元 x 的值为1, 某个 Weights 的初始值为 0.1, 这样后一层神经元计算结果就是 Wx = 0.1; 又或者 x = 20, 这样 Wx 的结果就为 2. 现在还不能看出什么问题, 但是, 当我们加上一层激励函数, 激活这个 Wx 值的时候, 问题就来了. 如果使用 像 tanh 的激励函数, Wx 的激活值就变成了 ~0.1 和 ~1, 接近于 1 的部已经处在了 激励函数的饱和阶段, 也就是如果 x 无论再怎么扩大, tanh 激励函数输出值也还是 接近1.换句话说, 神经网络在初始阶段已经不对那些比较大的 x 特征范围 敏感了. 这样很糟糕, 想象我轻轻拍自己的感觉和重重打自己的感觉居然没什么差别, 这就证明我的感官系统失效了. 当然我们是可以用之前提到的对数据做 normalization 预处理, 使得输入的 x 变化范围不会太大, 让输入值经过激励函数的敏感部分. 但刚刚这个不敏感问题不仅仅发生在神经网络的输入层, 而且在隐藏层中也经常会发生。Batch normalization, 正是对隐藏层的输入结果进行像之前那样的normalization 处理。
Batch normalization 的 batch 是批数据, 把数据分成小批小批进行 stochastic gradient descent(随机梯度下降). 而且在每批数据进行前向传递 forward propagation(前向传播)的时候, 对每一层都进行 normalization 的处理。
在这里插入图片描述
Batch normalization 也可以被看做一个层面. 在一层层的添加神经网络的时候, 我们先有数据 X, 再添加全连接层, 全连接层的计算结果会经过 激励函数 成为下一层的输入, 接着重复之前的操作. Batch Normalization (BN) 就被添加在每一个全连接和激活函数之间。
计算结果在进入激励函数前的值很重要, 如果我们不单单看一个值, 我们可以说, 计算结果值的分布对于激励函数很重要. 对于数据值大多分布在这个区间的数据, 才能进行更有效的传递. 对比这两个在激活之前的值的分布. 上者没有进行 normalization, 下者进行了 normalization, 这样当然是下者能够更有效地利用 tanh 进行非线性化的过程。
在这里插入图片描述
没有 normalize 的数据 使用 tanh 激活以后, 激活值大部分都分布到了饱和阶段, 也就是大部分的激活值不是-1, 就是1, 而 normalize 以后, 大部分的激活值在每个分布区间都还有存在. 再将这个激活后的分布传递到下一层神经网络进行后续计算, 每个区间都有分布的这一种对于神经网络就会更加有价值。

BN算法
在这里插入图片描述
这三步就是我们在刚刚一直说的 normalization 工序, 但是公式的后面还有一个反向操作, 将 normalize 后的数据再扩展和平移. 原来这是为了让神经网络自己去学着使用和修改这个扩展参数 gamma, 和 平移参数 β, 这样神经网络就能自己慢慢琢磨出前面的 normalization 操作到底有没有起到优化的作用, 如果没有起到作用, 我就使用 gamma 和 belt 来抵消一些 normalization 的操作。


下一篇是DCGAN实战~

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值