满足本地差分隐私的分类变换扰动机制

摘 要 本地差分隐私作为一种隐私保护技术,被广泛用于连续数值型数据的均值估计,使用的扰动机制将直接影响均值的准确度.为进一步提高均值估计的准确性,提出了一种满足差分隐私的分类变换扰动机制.该机制对连续数值型数据划分变换范围并进行分段,根据分段将其变换为1维二元分类数据.转换后使用随机响应机制进行扰动,再根据扰动后的数据标识的数值段从中随机均匀抽取数值作为扰动值.在真实数据和合成数据中的均值估计实验结果表明该机制极大地提高了准确性.除此之外,将分类变换扰动机制用于构建满足本地差分隐私的小批量梯度下降算法,并完成线性回归学习任务,实验结果证明该方法同样优于其他已有机制,可得到更小的均方误差.

关键词 本地差分隐私;数据转换;均值估计;小批量梯度下降;随机响应

随着云计算和大数据技术的发展,用户端产生的海量数据被服务器收集起来进行各种数据分析任务.虽然对这些数据进行分析可以为人们带来可观的效益,但是却造成了用户隐私暴露的问题.差分隐私由于其强大的隐私保障已经成为了一种标准的隐私保护模型.随着差分隐私的广泛使用,服务器变得越来越重要.然而,在真实世界中保证所有服务器都是可信的是不实际的,而不可信的服务器可能会因为某些原因泄露用户的隐私.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
本地化差分隐私 (Local Differential Privacy, LDP) 是一种保护个体隐私的方法,通过在本地对数据进行噪声扰动来保护隐私。信息熵可以用来评估差分隐私机制的隐私保护能力,即机制添加的噪声对原始数据的影响程度。 在 LDP ,通常用 Laplace 噪声或者指数噪声对原始数据进行噪声扰动。假设原始数据为 $x$,添加的噪声为 $n$,则扰动后的数据为 $y=x+n$。Laplace 噪声的概率密度函数为 $f(x)=\frac{1}{2b}\exp(-\frac{|x-\mu|}{b})$,其 $\mu$ 是噪声的均值,$b$ 是噪声的尺度参数。指数噪声的概率密度函数为 $f(x)=\frac{1}{b}\exp(-\frac{|x-\mu|}{b})$。 信息熵可以用来评估噪声扰动对隐私保护的影响程度。对于一个随机变量 $X$,其信息熵为 $H(X)=-\sum_{x\in X}p(x)\log_2p(x)$,其 $p(x)$ 是 $X$ 取值为 $x$ 的概率。对于一个 LDP 机制,其添加的噪声可以看作是一个随机变量 $N$,则扰动后的数据 $Y=X+N$ 也是一个随机变量。假设隐私攻击者知道扰动后的数据 $Y$,则攻击者可以根据噪声分布反推出原始数据 $X$ 的概率分布。攻击者的信息熵为 $H(X|Y)$,表示在知道扰动后的数据 $Y$ 的情况下,对原始数据 $X$ 的不确定性。 LDP 机制的隐私保护能力可以用差分隐私 (Differential Privacy, DP) 的 $\epsilon$-不可区分性来衡量。$\epsilon$-不可区分性表示隐私攻击者在得到任意两个数据集的扰动结果之后,不能够区分出这两个数据是否包含某个特定的个体。$\epsilon$ 和信息熵之间有一个关系式:$\epsilon\approx\frac{\Delta f}{b}$,其 $\Delta f$ 是查询函数的灵敏度,$b$ 是噪声的尺度参数。对于相同的 $\epsilon$,噪声尺度 $b$ 越小,机制的隐私保护能力越强,即信息熵越大。因此,信息熵可以用来评估 LDP 机制的隐私保护能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值