D - Pedometer AtCoder Beginner Contest 367

题意:

一个长度为n的数组a首尾相接,求满足a[i]~a[j]的和是m的倍数的[i,j]对数

思路:

由于首位相接,那么区间i-->j的所有数有两种情况:第一种是i<j的情况,第二种是i>j的情况

为了简化处理,我们可以将他变为一个线性数组,也就是原数组的后面再加一个原数组,那么新数组的所有区间就包含了以上两种情况:

设s[i]为前缀和数组,a[i]到a[j]的数的和是m的倍数--->(s[j]-s[i-1])%m=0-->s[i-1]%m=s[j]%m

那么就转换为求满足s[j-1]%m=s[i]%m的i和j的对数

先寻找i<j的[i,j]对:

设s[i]%m=k,那么我们用d[k]来记录从第一个位置到当前位置的所有满足s[i]%m=k的i的个数

那么我们对于当前位置i,可以算出满足s[i]%m=s[j]%m且j<i的个数,即d[s[i]%m]

那么对于j>i的情况,j和i之间间隔的长度不能大于数组长度,否则会重复

那么我们每次到i的时候将前面与他间隔长度大于n的数都删除

#include<bits/stdc++.h>
using namespace std;
const int N=4e5+10;
int n,m;
typedef long long ll;
ll a[N],s[N];
map<ll,ll> mp;
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		s[i]=s[i-1]+a[i];
		a[i+n]=a[i];
	}
	for(int i=1+n;i<=2*n;i++)s[i]=s[i-1]+a[i];
	ll ans=0;
	for(int i=1;i<=n;i++){
		ll x=s[i]%m;
		if(mp.count(x)){
			ans+=mp[x];
		}
		mp[x]++;
	}
	for(int i=1,j=1+n;i<=n;i++,j++){
		ll x=s[i]%m;
		mp[x]--;
		ll xx=s[j]%m;
		ans+=mp[xx];
	}
	cout<<ans;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值