题意:
一个长度为n的数组a首尾相接,求满足a[i]~a[j]的和是m的倍数的[i,j]对数
思路:
由于首位相接,那么区间i-->j的所有数有两种情况:第一种是i<j的情况,第二种是i>j的情况
为了简化处理,我们可以将他变为一个线性数组,也就是原数组的后面再加一个原数组,那么新数组的所有区间就包含了以上两种情况:
设s[i]为前缀和数组,a[i]到a[j]的数的和是m的倍数--->(s[j]-s[i-1])%m=0-->s[i-1]%m=s[j]%m
那么就转换为求满足s[j-1]%m=s[i]%m的i和j的对数
先寻找i<j的[i,j]对:
设s[i]%m=k,那么我们用d[k]来记录从第一个位置到当前位置的所有满足s[i]%m=k的i的个数
那么我们对于当前位置i,可以算出满足s[i]%m=s[j]%m且j<i的个数,即d[s[i]%m]
那么对于j>i的情况,j和i之间间隔的长度不能大于数组长度,否则会重复
那么我们每次到i的时候将前面与他间隔长度大于n的数都删除
#include<bits/stdc++.h>
using namespace std;
const int N=4e5+10;
int n,m;
typedef long long ll;
ll a[N],s[N];
map<ll,ll> mp;
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>a[i];
s[i]=s[i-1]+a[i];
a[i+n]=a[i];
}
for(int i=1+n;i<=2*n;i++)s[i]=s[i-1]+a[i];
ll ans=0;
for(int i=1;i<=n;i++){
ll x=s[i]%m;
if(mp.count(x)){
ans+=mp[x];
}
mp[x]++;
}
for(int i=1,j=1+n;i<=n;i++,j++){
ll x=s[i]%m;
mp[x]--;
ll xx=s[j]%m;
ans+=mp[xx];
}
cout<<ans;
return 0;
}