acwing第72场周赛题解

4624. 最小值:

题目链接:

4624. 最小值 - AcWing题库

给定两个整数 a,b,请你计算并输出 a,b,⌊a+b3⌋ 这三个整数中的最小整数。

⌊ ⌋ 表示下取整,即忽略小数部分,只取整数部分。

输入格式
第一行包含整数 T,表示共有 T 组数据。

每组数据占一行,包含两个整数 a,b。

输出格式
每组数据输出一行,一个整数,表示结果。

数据范围
前 3 个测试点满足 1≤T≤5。
所有测试点满足 1≤T≤1000,0≤a,b≤109。

输入样例:
4
4 4
1000000000 0
7 15
8 7
输出样例:
2
0
7
5

解题思路:

求三个数的最小值直接输出即可:

#include <cmath>
#include <cstdio>
#include <iostream>

using namespace std;

int main()
{
    int T;
    cin >> T;
    while (T -- )
    {
        int a, b;
        scanf("%d %d", &a, &b);
        printf("%d\n", min(a, min(b, (a + b) / 3)));
    }
    
    return 0;
}

AcWing 4625. 压缩文件

题目链接:
4625. 压缩文件 - AcWing题库

李华想用他的优盘拷贝 n 个文件,他的优盘的最大容纳空间为 m。

第 i 个文件所需占用的空间大小为 ai。

为了一次性拷贝所有文件,他可以将文件进行压缩。

已知,第 i 个文件经过压缩后,所占空间大小可以从 ai 变为 bi。

请问,他最少需要压缩多少个文件,才能使得优盘可以装下所有文件(即所有文件的所占空间之和不大于 m)。

输入格式
第一行包含两个整数 n,m。

接下来 n 行,每行包含两个整数 ai,bi。

输出格式
如果无论如何都不能装下所有文件,则输出 -1。

否则,输出一个整数,表示最少所需压缩的文件个数。

数据范围
前 3 个测试点满足 1≤n≤4。
所有测试点满足 1≤n≤105,1≤m≤109,1≤ai,bi≤109,ai>bi。

输入样例1:
4 21
10 8
7 4
3 1
5 4
输出样例1:
2
输入样例2:
4 16
10 8
7 4
3 1
5 4
输出样例2:
-1

解题思路:
根据贪心思想每次减去a - b的最大值即为最小要压缩的次数:

我们先计算所有a的和记为sum, 然后计算所有b的和记为ans;

若ans > m则说明不管压缩多少文件都无解(题目要求a > b);

sum - (a - b) = sum - a + b根据sum的含义这就是压缩后的文件大小。

每次判断sum - (a - b)是否装的下所有文件即可:

#include <cstdio>
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 100010;

int n, m;
int e[N];

int main()
{
    cin >> n >> m;
    
    long long sum = 0, ans = 0;
    for (int i = 0; i < n; i ++ )
    {
        int a, b;
        scanf("%d %d", &a, &b);
        
        sum += a;
        ans += b;
        e[i] = a - b;
    }
    
    int cnt = 0;
    sort(e, e + n);
    reverse(e, e + n);//先减去a - b的最大值
    
    if (ans > m) puts("-1");//无解
    else
    {
        for (int i = 0; i < n; i ++ )
        {
            if (sum > m)
            {
                sum -= e[i];
                cnt ++ ;//压缩次数加1
            }
            else break;
        }
        
        cout << cnt << endl;
    }
    
    return 0;
}

4626. 最小移动距离

题目链接:
4626. 最小移动距离 - AcWing题库

平面上有 n 个点,编号为 1∼n。

对于每个点 i(1≤i≤n),都存在一条从点 i 到点 ai(1≤ai≤n,ai 可以等于 i)的有向边。

所有边的长度均为 1。

请你判断是否存在一个最小移动距离 t(t≥1),使得:

我们规定,如果从点 u 出发,移动 t 单位长度距离后,到达点 v,就称点 v 是点 u 的目标点。注意,一个点的目标点也可能是它自己。
对于图中的每个点 x,如果点 y 是点 x 的目标点,则点 x 也必须是点 y 的目标点。
如果存在这样的 t,请你输出 t 的最小可能值,否则请你输出 -1。

输入格式
第一行包含一个整数 n。

第二行包含 n 个整数 a1,a2,…,an。

输出格式
如果存在满足条件的 t(t≥1),则输出一个正整数,表示 t 的最小可能值。

否则输出 -1。

数据范围
前 3 个测试点满足 1≤n≤4。
所有测试点满足 1≤n≤100,1≤ai≤n。

输入样例1:
4
2 3 1 4
输出样例1:
3
输入样例2:
4
4 4 4 4
输出样例2:
-1
输入样例3:
4
2 1 4 3
输出样例3:
1

解题思路:

因为所有点的出度为1,所以最后一定是这种图:

1:无环:

根据题意要求图中的每个点都可以相互到达,所以不符合题意

2:若是有环且环上存在树:

这种图显然也无解:因为点a只能走出去,不能走回来:

3:图全由环组成,这个显然可以,因为每个点都在环中,所以每个点都可以走回该点。

如何判断一个图全是环呢??

我们只需要统计点的入度即可:

若所有点的入度为1说明全是环。

否则说明无解:

那么我们如何求最小的t呢???

假设环上两个点a, b。如图:
 

加入环的长度为偶数,那么环中能满足所有从a, 走到b且能从b走回a的最小值即为 环的长度len / 2, 只有在a 到 b 为2 / len, b 到 a 也为len / 2若是偏一点则t = max([a, b], [b, a]) > len / 2.[a, b]表示从a到b的长度:

若加入的环的长度为奇数则只能是t = len

因此我们只需要求出满足所有环中t的取值,即求他们的最小公倍数 = 所有数的乘积 / 所有数的最大公约数。

这里要判断是否需要写高精度:

假设分为n个环 n = a1 + a2 + ...... + a100;

要求出a1 * a2 * .... a100最多是多少。

这里有一个结论我们可以把所有的ai都看为3, 最后不足的以2补全,则最大值为3 ^ 32 + 2 ^ 2不会爆long long :

#include <stack>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 110, M = N * N;

int n;
int din[N];
stack<int> stk;
bool in_stk[N];
int Size[N], scc_cnt;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], timestamp;

int gcd(int a, int b)//最大公因数模板
{
    return b ? gcd(b, a % b) : a ;
}

void add(int a, int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx;
    idx ++ ;
}

void tarjan(int u)//tarjan算法模板
{
    stk.push(u), in_stk[u] = true;
    low[u] = dfn[u] = ++ timestamp;
    
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!dfn[j])
        {
            tarjan(j);
            low[u] = min(low[u], low[j]);
        }
        else if (in_stk[j]) low[u] = min(low[u], dfn[j]);
    }
    
    if (dfn[u] == low[u])
    {
        int y;
        scc_cnt ++ ;
        do
        {
            y = stk.top();
            stk.pop();
            in_stk[y] = false;
            Size[scc_cnt] ++ ;//求环中点个个数即长度
        } while (y != u);
    }
}

int main()
{
    cin >> n;
    memset(h, -1, sizeof h);
    for (int i = 1; i <= n; i ++ )
    {
        int b;
        scanf("%d", &b);
        add(i, b);
        din[b] ++ ;
    }
    
    for (int i = 1; i <= n; i ++ )
        if (din[i] != 1) //说明存在树,无解
        {
            puts("-1");
            return 0;
        }
    
    for (int i = 1; i <= n; i ++ )
        if (!dfn[i])    
            tarjan(i);
    
    long long res = 1;
    for (int i = 1; i <= scc_cnt; i ++ )
    {
        int len = Size[i];//若环的长度为奇数。
        if (Size[i] % 2 == 0) len = len / 2;//若环的长度为偶数
        res = res * (len / gcd(len, res));//所有环乘积的最小公倍数
    }
    
    cout << res << endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥也不会hh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值