4624. 最小值:
题目链接:
给定两个整数 a,b,请你计算并输出 a,b,⌊a+b3⌋ 这三个整数中的最小整数。 ⌊ ⌋ 表示下取整,即忽略小数部分,只取整数部分。 输入格式 第一行包含整数 T,表示共有 T 组数据。 每组数据占一行,包含两个整数 a,b。 输出格式 每组数据输出一行,一个整数,表示结果。 数据范围 前 3 个测试点满足 1≤T≤5。 所有测试点满足 1≤T≤1000,0≤a,b≤109。 输入样例: 4 4 4 1000000000 0 7 15 8 7 输出样例: 2 0 7 5
解题思路:
求三个数的最小值直接输出即可:
#include <cmath> #include <cstdio> #include <iostream> using namespace std; int main() { int T; cin >> T; while (T -- ) { int a, b; scanf("%d %d", &a, &b); printf("%d\n", min(a, min(b, (a + b) / 3))); } return 0; }
AcWing 4625. 压缩文件
李华想用他的优盘拷贝 n 个文件,他的优盘的最大容纳空间为 m。 第 i 个文件所需占用的空间大小为 ai。 为了一次性拷贝所有文件,他可以将文件进行压缩。 已知,第 i 个文件经过压缩后,所占空间大小可以从 ai 变为 bi。 请问,他最少需要压缩多少个文件,才能使得优盘可以装下所有文件(即所有文件的所占空间之和不大于 m)。 输入格式 第一行包含两个整数 n,m。 接下来 n 行,每行包含两个整数 ai,bi。 输出格式 如果无论如何都不能装下所有文件,则输出 -1。 否则,输出一个整数,表示最少所需压缩的文件个数。 数据范围 前 3 个测试点满足 1≤n≤4。 所有测试点满足 1≤n≤105,1≤m≤109,1≤ai,bi≤109,ai>bi。 输入样例1: 4 21 10 8 7 4 3 1 5 4 输出样例1: 2 输入样例2: 4 16 10 8 7 4 3 1 5 4 输出样例2: -1
解题思路:
根据贪心思想每次减去a - b的最大值即为最小要压缩的次数:我们先计算所有a的和记为sum, 然后计算所有b的和记为ans;
若ans > m则说明不管压缩多少文件都无解(题目要求a > b);
sum - (a - b) = sum - a + b根据sum的含义这就是压缩后的文件大小。
每次判断sum - (a - b)是否装的下所有文件即可:
#include <cstdio> #include <iostream> #include <algorithm> using namespace std; typedef long long LL; const int N = 100010; int n, m; int e[N]; int main() { cin >> n >> m; long long sum = 0, ans = 0; for (int i = 0; i < n; i ++ ) { int a, b; scanf("%d %d", &a, &b); sum += a; ans += b; e[i] = a - b; } int cnt = 0; sort(e, e + n); reverse(e, e + n);//先减去a - b的最大值 if (ans > m) puts("-1");//无解 else { for (int i = 0; i < n; i ++ ) { if (sum > m) { sum -= e[i]; cnt ++ ;//压缩次数加1 } else break; } cout << cnt << endl; } return 0; }
4626. 最小移动距离
平面上有 n 个点,编号为 1∼n。 对于每个点 i(1≤i≤n),都存在一条从点 i 到点 ai(1≤ai≤n,ai 可以等于 i)的有向边。 所有边的长度均为 1。 请你判断是否存在一个最小移动距离 t(t≥1),使得: 我们规定,如果从点 u 出发,移动 t 单位长度距离后,到达点 v,就称点 v 是点 u 的目标点。注意,一个点的目标点也可能是它自己。 对于图中的每个点 x,如果点 y 是点 x 的目标点,则点 x 也必须是点 y 的目标点。 如果存在这样的 t,请你输出 t 的最小可能值,否则请你输出 -1。 输入格式 第一行包含一个整数 n。 第二行包含 n 个整数 a1,a2,…,an。 输出格式 如果存在满足条件的 t(t≥1),则输出一个正整数,表示 t 的最小可能值。 否则输出 -1。 数据范围 前 3 个测试点满足 1≤n≤4。 所有测试点满足 1≤n≤100,1≤ai≤n。 输入样例1: 4 2 3 1 4 输出样例1: 3 输入样例2: 4 4 4 4 4 输出样例2: -1 输入样例3: 4 2 1 4 3 输出样例3: 1
解题思路:
因为所有点的出度为1,所以最后一定是这种图:
1:无环:
根据题意要求图中的每个点都可以相互到达,所以不符合题意
2:若是有环且环上存在树:
这种图显然也无解:因为点a只能走出去,不能走回来:
3:图全由环组成,这个显然可以,因为每个点都在环中,所以每个点都可以走回该点。
如何判断一个图全是环呢??
我们只需要统计点的入度即可:
若所有点的入度为1说明全是环。
否则说明无解:
那么我们如何求最小的t呢???
假设环上两个点a, b。如图:
加入环的长度为偶数,那么环中能满足所有从a, 走到b且能从b走回a的最小值即为 环的长度len / 2, 只有在a 到 b 为2 / len, b 到 a 也为len / 2若是偏一点则t = max([a, b], [b, a]) > len / 2.[a, b]表示从a到b的长度:
若加入的环的长度为奇数则只能是t = len
因此我们只需要求出满足所有环中t的取值,即求他们的最小公倍数 = 所有数的乘积 / 所有数的最大公约数。
这里要判断是否需要写高精度:
假设分为n个环 n = a1 + a2 + ...... + a100;
要求出a1 * a2 * .... a100最多是多少。
这里有一个结论我们可以把所有的ai都看为3, 最后不足的以2补全,则最大值为3 ^ 32 + 2 ^ 2不会爆long long :
#include <stack> #include <cstdio> #include <cstring> #include <iostream> using namespace std; const int N = 110, M = N * N; int n; int din[N]; stack<int> stk; bool in_stk[N]; int Size[N], scc_cnt; int h[N], e[M], ne[M], idx; int dfn[N], low[N], timestamp; int gcd(int a, int b)//最大公因数模板 { return b ? gcd(b, a % b) : a ; } void add(int a, int b) { e[idx] = b; ne[idx] = h[a]; h[a] = idx; idx ++ ; } void tarjan(int u)//tarjan算法模板 { stk.push(u), in_stk[u] = true; low[u] = dfn[u] = ++ timestamp; for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (!dfn[j]) { tarjan(j); low[u] = min(low[u], low[j]); } else if (in_stk[j]) low[u] = min(low[u], dfn[j]); } if (dfn[u] == low[u]) { int y; scc_cnt ++ ; do { y = stk.top(); stk.pop(); in_stk[y] = false; Size[scc_cnt] ++ ;//求环中点个个数即长度 } while (y != u); } } int main() { cin >> n; memset(h, -1, sizeof h); for (int i = 1; i <= n; i ++ ) { int b; scanf("%d", &b); add(i, b); din[b] ++ ; } for (int i = 1; i <= n; i ++ ) if (din[i] != 1) //说明存在树,无解 { puts("-1"); return 0; } for (int i = 1; i <= n; i ++ ) if (!dfn[i]) tarjan(i); long long res = 1; for (int i = 1; i <= scc_cnt; i ++ ) { int len = Size[i];//若环的长度为奇数。 if (Size[i] % 2 == 0) len = len / 2;//若环的长度为偶数 res = res * (len / gcd(len, res));//所有环乘积的最小公倍数 } cout << res << endl; return 0; }