【无标题】

一、三角函数

1.1、三角函数基础知识

1.1.1、角的概念

顶点;始边;终边

1.1.2、角的大小

角的大小与边的长短没有关系,取决于旋转的方向和角度

1.1.3、角的分类

零角;锐角、直角、钝角、劣角(0\degree,180\degree);平角、优角(180\degree,360\degree);周角

正角(逆时针方向旋转而成的角);负角(顺时针方向旋转而成的角)

1.1.4、角的度量

1.1.4.1、角度制

以度分秒为单位 (1\degree=60’=360″)

1.1.4.2、弧度制

弧长与半径之长度量对应圆心角角度: (|\alpha|=\frac l r \Rightarrow l=|\alpha|r)

弧度制统一了度量弧和角度的单位

(2\pi rad = 360\degree\ \ \ 1\degree=\frac {\pi}{180}rad\ \ \ \ 1rad =(\frac {180} \pi)\degree \approx 57.3\degree =57\degree 18’)

(拓展:扇形弧长公式\ \ l=|\alpha|r\ \ \ 扇形面积公式 S=frac 1 2 |\alpha|r^2=\frac 1 2 lr=\frac{n}{360}\pi r^2)

1.1.5、象限角 VS 轴线角

(第一象限角:{\alpha|0+2kπ<\alpha<\frac \pi 2+2k\pi,k\in Z})

(第二象限角:{\alpha|\frac \pi 2+2kπ<\alpha<\pi+2k\pi,k\in Z})

(第三象限角:{\alpha|\pi+2kπ<\alpha<\frac {3\pi} 2+2k\pi,k\in Z})

(第四象限角:{\alpha|\frac {3\pi} 2+2kπ<\alpha<2\pi+2k\pi,k\in Z})

(轴线角:e.g. 终边在坐标轴上的角的集合{\alpha|\alpha=\frac {k\pi}2})

1.2、三角函数

1.2.1、三角函数的定义

以坐标系原点为圆心的单位圆 (C:x2+y2=1);点(C)在圆(C:x2+y2=1,)不妨设(P(x,y),)圆的半径为(r=\sqrt{ x2+y2},)点(P)所在终边与(x)轴正方向所成角为(\alpha,)则

(正弦函数 sin\alpha=\frac y r = \frac{y}{\sqrt{ x2+y2}};\ \ \ \ 余弦函数 cos\alpha=\frac x r = \frac{x}{\sqrt{ x2+y2}};\ \ \ \ 正切函数\ tan\alpha =\frac y x)

(余切函数\ cot\alpha = \frac{1}{tan\alpha}=\frac x y;\ \ \ \ \ 正割函数:sec\alpha = \frac{1}{cos\alpha}=\frac{\sqrt{ x2+y2}}{x}; \ \ \ 余割函数csc\alpha = \frac{1}{sin\alpha}=\frac{\sqrt{ x2+y2}}{y})

1.2.2、三角函数图像

根据图象列举三角函数性质:定义域、值域、最值、单调性、周期性、对称性、奇偶性……

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mny76l2A-1689120637175)(三角函数图像.jpg)]

1.2.3、特殊角的三角函数值

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LlTzWJs0-1689120637176)(特殊角的三角函数值.jpg)]

(拓展:利用两角和与差公式推导\frac \pi {12}、\frac {5\pi}{12}、\frac {7\pi}{12}、\frac {11\pi}{12}的三角函数值)
(注释:\frac \pi {12}=\frac \pi {3}-\frac \pi {4};\ \ \ \frac {5\pi}{12}=\frac \pi {6}+\frac \pi {4}\ \ \ \ \frac {7\pi}{12}=\frac \pi {3}+\frac \pi {4}\ \ \ \frac {11\pi}{12}=\frac {2\pi} {3}+\frac \pi {4})

1.2.4、反三角函数

(y = sin x \rightarrow y = arc sin x)

(y = cos x \rightarrow y = arc cos x)

(y = tan x \rightarrow y = arc tan x)

(y = cot x \rightarrow y = arc cot x)

(y = sec x \rightarrow y = arc sec x)

(y = csc x \rightarrow y = arc csc x)

1.2.5、反三角函数图像

根据图象列举三角函数性质:定义域、值域、最值、单调性、周期性、对称性、奇偶性……

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LL5ofwYn-1689120637176)(反三角函数图像.jpg)]

1.3、三角函数有关公式

1.3.1、同角三角函数公式

(tan\alpha=\frac{sin\alpha}{\cos\alpha}\ \ \ \ cot\alpha=\frac{cos\alpha}{sin\alpha}=\frac 1 {tan\alpha})

(sec\alpha=\frac 1 {soc\alpha}\ \ \ \ csc\alpha=\frac 1 {sin\alpha}\ \ \ \ cot\alpha=\frac 1 {tan\alpha})

(sin2\alpha+cos2\alpha=1;\ \ \ 1+tan\alpha=\frac{sin2\alpha+cos2\alpha}{cos2\alpha}=\frac 1 {cos2\alpha}=sec2\alpha;\ \ \ \ 1+cot2\alpha=\frac{sin2\alpha+cos2\alpha}{sin2\alpha}=\frac 1 {sin2\alpha}=csc2\alpha)

1.3.2、诱导公式

口诀:奇变偶不变;符号看象限

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RfKTrtBD-1689120637176)(诱导公式.jpg)]

1.3.3、两角和与差三角函数公式

(sin(α+β)= sin α cos β + cos α sin β)

(sin(α-β)= sin α cos β - cos α sin β)

(cos(α+β)= cos α cos β - sin α sin β)

(cos(α-β)= cos α cos β + sin α sin β)

(tan(α+β)= \frac {tan α + tan β}{1- tan α·tan β})

(tan(α-β)= \frac {tan α - tan β}{1 + tan α·tan β})

两角和与差的三角函数公式证明

a. 等面积法证明 (sin(\alpha+\beta)=sin α cos β + cos α sin β)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YXs2L4Rj-1689120637177)(等面积法证明两角和与差三角函数公式.jpg)]

(已知\triangle RPQ,过点R作PQ的垂线,垂足为X,\angle PRQ = \angle A +\angle B)

(显然S_{\triangle RPQ}=S_{\triangle RPX}+S_{\triangle RQX})

(S_{\triangle RPQ}=\frac 1 2 p q sin(A+B);\ \ S_{\triangle RPX}=\frac 1 2 PX · RX=\frac 1 2(q sinA)(p cosB)=\frac 1 2 p q sinA cosB;\ \ \ S_{\triangle RQX}=\frac 1 2 QX · RX=\frac 1 2(q cosA)(p sinB)=\frac 1 2 p q sinB cosA)

所以,(sin(A+B)=sinAcosB+ cosAsinB)

b. 向量法证明 (cos(A-B)= cos A cos B + sin A sin B)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dbqCbIsv-1689120637177)(向量法证明两角和与差三角函数公式.jpg)]

在单位圆上取两个角(\angle A,\angle B,)其终边与单位圆的交点分别是P((cosA,sinA))与Q((cosB,sinB),)
则(\overrightarrow{OP}·\overrightarrow{OQ}=|\overrightarrow{OP}|·|\overrightarrow{OQ}|cos(A-B)=cos A cos B + sin A sin B)
所以,(cos(A-B)= cos A cos B + sin A sin B)

1.3.4、倍角公式 & 万能公式

[sin 2\alpha = 2sin\alpha cos\alpha = \frac{2sin\alpha cos\alpha}{sin^2 \alpha + cos^2 \alpha}=\frac {2tan\alpha}{1+tan^2\alpha}=\frac{2}{cot\alpha+tan\alpha}]

[cos2\alpha=cos\alpha-sin2\alpha=1-2sin^2 \alpha = 2cos^2 \alpha -1 = \frac{1 - tan^2\alpha}{1 + tan^2\alpha}]

  • [变形:cos^2 \alpha = \frac{1+coa2\alpha}{2};\ \ \ sin^2\alpha=\frac{1-coa2\alpha}{2}]

[tan2\alpha = \frac{sin 2\alpha}{cos 2\alpha}=\frac{2tan\alpha}{1-tan^2\alpha}]

[cot2\alpha = \frac{cos 2\alpha}{sin 2\alpha}=\frac{cos2\alpha-sin2\alpha}{2sin\alpha cos\alpha}=\frac{cot2\alpha-1}{2cot\alpha}=\frac{1+tan2\alpha}{2tan\alpha}]

[sec\alpha=\frac{1}{cos\alpha}=\frac{sin^2\alpha + cos2\alpha}{sin2\alpha - cos2\alpha}=\frac{tan2\alpha+1}{1-tan2\alpha}=\frac{1+cot2\alpha}{cot2\alpha-1}=\frac{sec2\alpha}{1-tan^2\alpha}]

1.3.5、半角公式

[sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-cos\alpha}2};\ \ \ cos\frac{\alpha}{2}=\pm\sqrt{\frac{1-cos\alpha}2}]

[tan\frac{\alpha}{2}=\pm\sqrt{\frac{1-cos\alpha}{1+cos\alpha}}=\frac{sin\alpha}{1+cos\alpha}=\frac{1-cos\alpha}{sin\alpha}=csc\alpha-cot\alpha]

[cot\frac{\alpha}{2}=\pm\sqrt{\frac{1+cos\alpha}{1-cos\alpha}}=\frac{1+cos\alpha}{sin\alpha}=\frac{sin\alpha}{1-cos\alpha}=csc\alpha + cot\alpha]

[sec\frac\alpha 2= \frac 1 {cos\frac \alpha 2} = \pm\sqrt{\frac{2}{1+cos\alpha}}=\pm\sqrt{\frac{2sec\alpha}{sec\alpha + 1}}]

[csc\frac\alpha 2= \frac 1 {sin\frac \alpha 2} = \pm\sqrt{\frac{2}{1-cos\alpha}}=\pm\sqrt{\frac{2sec\alpha}{sec\alpha - 1}}]

1.3.6、积化和差公式

[sin α·cos β=\frac 1 2 [sin(α+β)+sin(α-β)]]

[sin α·sin β=-\frac 1 2 [cos(α+β)-cos(α-β)]]

[cos α·sin β=\frac 1 2 [sin(α+β)-sin(α-β)]]

[cos α·cos β=\frac 1 2 [cos(α+β)+cos(α-β)]]

1.3.7、和差化积公式

(sin α + sin β = 2sin[\frac {α+β}{2}]·cos[\frac {α-β}{2}])

(sin α - sin β = 2sin[\frac {α-β}{2}]cos[\frac {α+β}{2}]·)

(cos α + cos β = 2cos[\frac {α+β} 2]·cos[\frac {α-β}{2}])

(cos α - cos β = -2sin[\frac {α+β} 2]·sin[\frac {α-β} 2])

1.3.8、辅助角公式

(注释:以 A>0为例,if \ \ A<0,先提取负号,其余步骤同下)

[y=Asin\omega x + B cos\omega x = \sqrt{A2+B2} (\frac{A}{\sqrt{A2+B2}}sin\omega x + \frac{B}{\sqrt{A2+B2}}cos\omega x)=sin(\omega x+\psi),其中,cos\psi=\frac{A}{\sqrt{A2+B2}},tan\psi=\frac B A]

[y=Asin\omega x + B cos\omega x = \sqrt{A2+B2} (\frac{A}{\sqrt{A2+B2}}sin\omega x + \frac{B}{\sqrt{A2+B2}}cos\omega x)=cos(\omega x-\psi),其中,sin\psi=\frac{A}{\sqrt{A2+B2}},tan\psi=\frac A B]

1.4、化简求值问题

1.4.1、化简求值技巧汇总

a. 切化弦、弦化切 or 分子分母同时乘以或者除以某个式子;

b. 拼凑法 or 待定系数法(\lambda f(x) + \mu g(x) = h(x));

c. 上述公式及其变形的应用;

d. 常数代换 or “1”的妙用;

e. 异名化同名:辅助角公式 & 诱导公式

f. 分子 or 分母有理化:(e.g.\sqrt{\frac{1+cos\alpha}{1-cos\alpha}}+\sqrt{\frac{1-cos\alpha}{1+cos\alpha}}\ \ ,\ \alpha \in (\pi,\frac{3\pi}2))

1.5、(y=Asin(\omega x+\psi) + B)

1.5.1、(y=Asin(\omega x+\psi) + B)的性质

(振幅|A|最小正周期T频率f=\frac 1 T )

(单调性:同增异减)

(奇偶性:\psi = k \pi,k \in Z,则y=f(x)为奇函数;\psi =\frac \pi 2 + k \pi,k \in Z,则y=f(x)为偶函数)

(注释:t=\omega x+\psi换元后,y=Asin(\omega x+\psi) + B的取值和性质可以用y=sin t的图像来分析)

1.5.2、图像的伸缩平移变换((\omega>0))

变化途径一:
(y=sin x\xrightarrow{\text{横坐标变为原来的1/ω倍}}y=sin ωx\xrightarrow{\text{图像沿x轴左移ψ/ω个单位}}y=sin(ωx+ψ)\xrightarrow{\text{纵坐标变为原来的A倍}}y=Asin(ωx+ψ)\xrightarrow{\text{纵坐标向上平移B个单位(B>0)}}y=Asin(ωx+ψ)+B)

变化途径二:
(y=sin x\xrightarrow{\text{图像沿x轴左移个单位}}y=sin(x+\psi)\xrightarrow{\text{横坐标变为原来的1/ω倍}}y=sin(ωx+ψ)\xrightarrow{\text{纵坐标向上平移B/A个单位(B/A>0)}}y=sin(ωx+ψ)+\frac B A\xrightarrow{\text{纵坐标变为原来的A倍}}y=Asin(ωx+ψ)+B)

1.5.3、(y=Asin(\omega x+\psi) + B) 的求解

1.5.4、(y=Asin(\omega x+\psi) + B) 与函数零点问题

二、解三角形

2.1、解三角形的基础知识

2.1.1、正弦定理

[\frac{a}{sinA} = \frac{b}{sinB}=\frac {c}{sinC} = 2R, 其中R为外接圆半径]

公式变形:

[a🅱️c=sinA:sinB:sinC][a=2R sinA;\ \ \ \ \ b=2R sinB;\ \ \ \ \ c=2R sinC;][sinA=\frac{a}{2R};\ \ \ \ \ sinB=\frac{b}{2R};\ \ \ \ \ sinC=\frac{c}{2R};] [\frac{a+b+c}{sinA+sinB+sinC}=\frac{a}{sinA}]

[大边对大角,大角对大边:即在\triangle ABC 中,A>B \Leftrightarrow sinA>sinB \Leftrightarrow a>b]

2.1.2、余弦定理

[c^2 = a^2 + b^2 - 2ab cosC \Rightarrow cosC = \frac{a^2+ b^2 - c2}{2ab}][b2 = a^2 + c^2 - 2ac cosB \Rightarrow cosB = \frac{a^2+ c^2 - b2}{2ac}][a2 = b^2 + c^2 - 2bc cosA \Rightarrow cosA = \frac{b^2+ c^2 - a^2}{2bc}]

注意:
[勾股定理是余弦定理的特例,A=\frac{\pi}{2}\Rightarrow cosA=0][A \in (0,\frac{\pi}{2})\Leftrightarrow cosA>0 \Leftrightarrow \frac{b^2+ c^2 - a^2}{2bc}>0 \Leftrightarrow b^2+ c^2 - a^2>0][A \in (\frac{\pi}{2},\pi)\Leftrightarrow cosA<0 \Leftrightarrow \frac{b^2+ c^2 - a^2}{2bc}<0 \Leftrightarrow b^2+ c^2 - a^2 <0]

2.1.3、角平分线定理

[在\triangle ABC 中,如果射线AD平分角\angle BAC ,则\frac{AB}{BD}=\frac{AC}{CD}]

a. 等面积法证明角平分线定理

b. 正弦定理证明角平分线定理

2.1.4、射影定理

[对于\forall \ \triangle ABC ,有\ \ a=b cosC + c cosB;\ \ \ \ \ b=a cosC + c cosA;\ \ \ \ \ c=a cosB + b cosA;]

(if \ \triangle ABC 为Rt \triangle ,且直线AC上有一点D满足AD \bot BC,则 AC^2=AD·AB;\ \ \ \ BC2=BD·BA; CD2=DA·DB)

2.1.5、三角形的相关计算

[对于\forall \ \triangle ABC \ 有 S_{\triangle ABC }= \frac 1 2 ab sinC = \frac 1 2 ac sinB = \frac 1 2 bc sinA= \frac 1 2 a d_{A-BC}] [对于\forall \ \triangle ABC \ 有 S_{\triangle ABC }= \frac 1 2 (a+b+c)r,\ \ \ \ r为\triangle ABC内切圆半径 ][对于\forall \ \triangle ABC \ 有 S_{\triangle ABC }=2R^2 SinA sinB sinC = \frac{abc}{4R}][对于\forall \ \triangle ABC \ 有 S_{\triangle ABC }=\sqrt{p(p-a)(p-b)(p-c)},\ \ \ \ p=
\frac{a+b+c}2=\frac{C_{\triangle ABC}}2]

在空间直角坐标系中,空间几何体的表面积、体积计算……

[\forall \ \triangle ABC ,有\ C_{\triangle ABC}= a+b+b=2R(sinA+sinB+sinC)=\frac{2S_{\triangle ABC}}{r},\ \ r为\triangle ABC内切圆半径]

2.2、三角形的多心问题

2.2.1、三角形的外心

2.2.2、三角形的内心

2.2.3、三角形的垂心

2.2.4、三角形的重心

2.2.5、三角形的中心

2.2.6、三角形的旁心

2.3、求解三角形的边、角、周长、面积

(记\triangle ABC 的内角A,B,C的对边分别为a,b,c;若a=2,C=\frac \pi 4,cos\frac B 2 = \frac {2\sqrt5}{5}😉
(求sinA;\ \ \ \ (2)求S_{\triangle ABC}的面积)

【提示】(两角和与差的三角函数公式;正弦定理;三角形面积公式)

(记\triangle ABC 的内角A,B,C的对边分别为a,b,c;已知acosC+\sqrt3 asinC-b-c=0)
((1)求A;\ \ \ 若b=2,c=5,角A的平分线交BC于点D,求AD)

【提示】(等面积法)

(记\triangle ABC 的内角A,B,C的对边分别为a,b,c;已知\frac{b2+c2-a^2}{cosA}=2,若\frac{a cosB-b cosA}{a cosB+b cosA}-\frac b c =1,求三角形\triangle ABC 的面积)

【提示】(利用余弦定理分析bc的值;化简求cosA的大小;利用面积公式)

(在\triangle ABC 的内角A,B,C的对边分别为a,b,c;已知\angle BAC =120\degree,AB=2,AC=1,若点D为BC边上一点,且\angle BAD =90\degree,求S_{\triangle ADC})

【提示】分析(利用正弦定理和互补角正弦值相同分析BD和CD的比例关系)

(在\triangle ABC 的内角A,B,C的对边分别为a,b,c;已知(2a+c)cos(A+C)= b cosC)
((1)求角B的大小;(2)若点D为\triangle ABC 外一点,且\angle BCD =\frac {7\pi}{12},AB\bot AD,AB=1,AD=\sqrt3,求S_{\triangle ABC}的面积)

【提示】(连接BD,在\triangle BCD 中求解BC的长度)

(在\triangle ABC 的内角A,B,C的对边分别为a,b,c;已知a b cosA-\sqrt3c + a^2 cosB = 0)
(求a的值;(2)点D在线段BC上,\angle BAC =120\degree, \angle BAD = 45\degree,CD=1,求S_{\triangle ABC}的面积)

【提示】(方法一:由\frac{S_{\triangle ADC}}{S_{\triangle ADB}} = \frac {CD}{BD}推导 AB=AC;余弦定理求解AB、AC)
(方法二:由正弦定理结合条件求\angle ACB =30\degree;余弦定理、三角形面积公式)

2.4、三角形解的个数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Od1uJmEj-1689120637178)(三角形解的个数.jpg)]

a.
b.
c.
d.
e.
f.
h.
g.

2.5、判断三角形的形状

2.6、三角形最值相关问题

(在\triangle ABC中,角A,B,C的对边分别为\ a,b,c\ ;请在①\ 1+\frac{tanA}{tanB}=\frac{2c}{b};②\ 2acosC=2b-c;③\ cos2B+cos2C-cos^2A+sinB sinC=1;这三个条件中任选一个,完成下列问题:)

((1)求角A;\ \ (2)若\triangle ABC 是锐角三角形,函数f(x)=2 cos x (sin x -\sqrt 3 cos x)+ \sqrt 3 ,求f(B)的最大值)

(已知向量\overrightarrow{m}=(cos x , 1),\ \overrightarrow{n}=(\sqrt3 sin x,cos^2 x),且函数f(x)=\overrightarrow{m}·\overrightarrow{n})

(求函数f(x)的单调区间;\ \ (2)若在\triangle ABC中,角A,B,C的对边分别为\ a,b,c\ ;(2a-c)cosB = b cosC,求f(\frac A 2 + \frac \pi 6)的取值范围)

2.6.1、边角互化,转化为辅助角公式求解最值

例1、 (在\triangle ABC中,角A,B,C的对边分别为\ a,b,c\ ;\ 2sinA - \sqrt(3) cosC = \frac{\sqrt3 sinC}{tanB})
((1)求B的大小)
((2)if \ B 为锐角,求sinA+sinB+sinC 的取值范围)

变形:a.(\ \ (2)if B 为锐角,求sinA+sinC 的最大值)

变形:b.(\ \ (2)if B 为钝角,求cosA+cosB+cosC 的取值范围)

变形:c.(\ \ (2)if B 为锐角,b=4,求C_{\triangle ABC}的取值范围)

例2、(在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;且2b sin(A+\frac{\pi}{6})=a+c)
((1)求B的大小)
((2)if \triangle ABC 为锐角三角形,b=2,求C_{\triangle ABC}的取值范围)

变形: (if \ \triangle ABC为钝角三角形,且B>A>C, b=2,求C_{\triangle ABC}的取值范围)

例3、(在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;且2a sinA =(2b+c)sinB+(2c+b)sinC,b=2;)

((1)求sinA+sinB+sinC 的取值范围;)

((2)求C_{\triangle ABC}的取值范围;)

((3)求2a-c的取值范围)

例4、(在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;\ if \ a sin(\frac{A+C}{2})=b sinA;)
(若\triangle ABC 为钝角三角形,b=2,求S_{\triangle ABC}的取值范围)

变形:a.(求C_{\triangle ABC}的取值范围)

变形:b.(if \triangle ABC 为锐角三角形,求S_{\triangle ABC}的取值范围)

2.6.2、 消元,函数思想分析最值

(5.2.1.在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;且2(tanA+tanB)=\frac{tanA}{cosB}+\frac{tanB}{cosA},求cosC的最小值)

【提示】消元,对勾函数分析最值

(5.2.2.\ 已知f(x)=1-2\sqrt3 sin x cos x-2cos^2 x + m的最大值为3,) (if\ \ \triangle ABC 为锐角三角形,角A,B,C的对边分别为\ a,b,c,且f(A)=0,求\frac b c 的取值范围)

(5.2.3.\ 若\triangle ABC 的面积为\frac {\sqrt3}{4}(a2+c2-b^2),且\angle C 为钝角,求\frac c a 的取值范围)

(5.2.4.\ 在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;且角B为锐角,8sinAsinC = sin^2B,求\frac{a+c}{b}的取值范围)

(5.2.5.\ 在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;已知点D在BC边上,\angle ADB =120\degree,AD=2,CD=2BD,当\frac{AC}{AB}取得最小值时BD的长度)

【提示】(求谁设谁,利用两个余弦定理建立\frac{AC}{AB} 与BD的关系)

2.6.3、 基本不等式思想求解最值

5.3.1、(在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;且cosC+(cosA-\sqrt3 sinA)cosB=0)😭\ \ if \ a+c=1,求b的取值范围)

【提示】(ac\le (\frac{a+c}{2})^2)

5.3.2、(在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;且c=1,\angle C的角平分线交AB于点D,if \ sinA+sinB = 2sin\angle ACB,求CD的取值范围)

【难点】(等面积法S_{\triangle ABC} = S_{\triangle CAD} + S_{\triangle CBD},推导CD = ab cos\frac {\angle ACB}{2})

5.3.3、(在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;且\angle ABC =120\degree,\angle ABC 的角平分线交AC于点D,且BD=1,求4a+c的最小值)

2.6.4、 利用其他知识点求解最值

(5.4.1 \ 在\triangle ABC中,角A,B,C的对边分别为\ a,b,c;且满足(a-c)(sinA+sinC)-sinB(a-b)=0,若S_{\triangle ABC} =2\sqrt3,点D为边AB的中点,求CD的最小值)

【提示】:利用向量

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值