SVM算法

一、SVM算法基础知识

1、SVM算法的目的

与KNN相同,解决分类问题,不同在于SVM是找决策边界,从而把数据进行划分开。

2、SVM算法的原理

(1)怎么寻找决策边界

首先寻找支持向量,再选出最好的决策边界

(2)支持向量要大的还是小的 

要小的,离自己近才是安全的,即两个支持向量要离的近

(3)决策边界是要大的还是小的

要大的,即要路比较宽的,分类快,且不容易出错

(4)怎么找支持变量

A、距离计算(点到平面的距离)

计算1点到由2处两个点形成的面的距离(用到了向量知识)

B、目标函数

目的:找到一条线,使得离该线最近的点能够最远。

C、软间隔优化

考虑异常的噪音,让分类更加合理(引入松弛因子)剔除差距大的因子

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值