一、SVM算法基础知识
1、SVM算法的目的
与KNN相同,解决分类问题,不同在于SVM是找决策边界,从而把数据进行划分开。
2、SVM算法的原理
(1)怎么寻找决策边界
首先寻找支持向量,再选出最好的决策边界
(2)支持向量要大的还是小的
要小的,离自己近才是安全的,即两个支持向量要离的近
(3)决策边界是要大的还是小的
要大的,即要路比较宽的,分类快,且不容易出错
(4)怎么找支持变量
A、距离计算(点到平面的距离)
计算1点到由2处两个点形成的面的距离(用到了向量知识)
B、目标函数
目的:找到一条线,使得离该线最近的点能够最远。
C、软间隔优化
考虑异常的噪音,让分类更加合理(引入松弛因子)剔除差距大的因子