《程序设计基础II》实验3——递推

A - 养兔子

Description

一对成熟的兔子每天能且只能产下一对小兔子,每次都生一公一母,每只小兔子的成熟期是1天,小兔子出生后隔一天才能再生小兔子。第一天某人领养了一对成熟的兔子,一公一母,请问第N天以后,他将会得到多少对兔子。

Input

输入为一个整数n(1 ≤ n ≤ 90)。

Output

对应输出第n天有几对兔子(假设没有兔子死亡现象,而且是一夫一妻制)。

Sample

Input

2

Output

2

Hint

数据类型可以用64位整数:long long

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int n,i;
    long long int f[100];
    scanf("%d",&n);
    f[1]=1;
    f[2]=2;
    for(i=3; i<=n; i++)
    {
        f[i]=f[i-1]+f[i-2];
    }
    printf("%lld\n",f[n]);

    return 0;
}

B - 母牛的故事

Description

有一对夫妇买了一头母牛,它从第2年起每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。请编程实现在第n年的时候,共有多少头母牛?

Input

输入为一个整数n(0< n< 55)。

Output

输出在第n年的时候母牛的数量。

Sample

Input 

5

Output 

6
#include <stdio.h>
#include <stdlib.h>
int main()
{
    int n,i;
    long long int f[100];
    scanf("%d",&n);
    f[1]=1;
    f[2]=2;
    f[3]=3;
    f[4]=4;
        for(i=5; i<=n; i++)
    {
        f[i]=f[i-1]+f[i-3];
    }
    printf("%lld\n",f[n]);

    return 0;
}

C - 鬼吹灯之龙岭迷窟

Description

    在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。

    这个比例就叫做黄金分割比,它是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.6180339887。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。 

    现在小玉有一个正整数数列,这个数列的前一项和后一项的比值十分趋近于黄金分割比,即(a[i])/(a[i+1])~ 0.6180339887,(i>=1),可是她只知道数列的第一项是5,现在她想通过已有条件推断出数列的任意项,请你帮助她编写一个程序计算。

Input

输入一个整数n(1<=n<=20)。

Output

输出一个数,代表这个数列的第n项a[n]。

Sample

Input 

1

Output 

5
#include <stdio.h>
#include <stdlib.h>
int main()
{
    int n,i;
    long long int f[100];
    scanf("%d",&n);
    f[1]=5;
    f[2]=8;
    for(i=3; i<=n; i++)
    {
        f[i]=f[i-1]+f[i-2];
    }
    printf("%lld\n",f[n]);

    return 0;
}

此题的本质可视为:求斐波那契额数列

递推公式:fn=fn-1+fn-2(n>=2)  f0=0,f1=1;

斐波那契数列的性质:

(1)性质一:模除周期性

       数列的数模除某个数的结果会呈现一定周期性,因为数列中的某个数取决与前两个数,一旦有连着的两个数的模除结果分别等于第0 第一项的模除结果,那麽代表着一个新的周期的的开始,如果模除n,则每个周期中的元素不会超过n×n;

(2)性质二:黄金分割

       随着i的增大Fi/Fi-1 接近于0.618.

(3)性质三:平方与前后项

       从第二项开始,每个奇数项的平方都比前后两项之积多一,每个偶数项的平方比前后两项之积少一.

(4)性质四:

       斐波那契数列的第n+2项代表了集合{1,2,...n}中所有不包含相邻正整数的子集的个数.

······

其他性质可参考此网站:(38条消息) 斐波那契数列性质总结_OJBFOWE的博客-CSDN博客_斐波那契数列性质

D - 骨牌铺方格

Description

在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数. 例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:

Input

输入包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0< n<=50)。

Output

输出铺放方案的总数。

Sample

Input 

3

Output 

3

Hint

hdoj2046 有链接提示的题目请先去链接处提交程序,AC后提交到SDUTOJ中,以便查询存档。

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int n,i;
    long long int f[100];
    scanf("%d",&n);
    f[1]=1;
    f[2]=2;
    for(i=3; i<=n; i++)
    {
        f[i]=f[i-1]+f[i-2];
    }
    printf("%lld\n",f[n]);

    return 0;
}

E - 爬楼梯

Description

小明是个非常无聊的人,他每天都会思考一些奇怪的问题,比如爬楼梯的时候,他就会想,如果每次可以上一级台阶或者两级台阶,那么上 n 级台阶一共有多少种方案?

Input

输入只有一行为一个正整数 n(1 ≤ n ≤ 50)。

Output

输出符合条件的方案数。
注意:64-bit 整型请使用 long long 来定义,并且使用 %lld 或 cin、cout 来输入输出,请不要使用 __int64 和 %I64d。

Sample

Input 

4

Output 

5
#include <stdio.h>
#include <stdlib.h>
int main()
{
    int n,i;
    long long int f[100];
    scanf("%d",&n);
    f[1]=1;
    f[2]=2;
    for(i=3; i<=n; i++)
    {
        f[i]=f[i-1]+f[i-2];
    }
    printf("%lld\n",f[n]);

    return 0;
}

F - 三国佚事——巴蜀之危

Description

话说天下大势,分久必合,合久必分。。。却道那魏蜀吴三国鼎力之时,多少英雄豪杰以热血谱写那千古之绝唱。古人诚不我欺,确是应了那句“一将功成万骨枯”。 
是夜,明月高悬。诸葛丞相轻摇羽扇,一脸愁苦。原来是日前蜀国战事吃紧,丞相彻夜未眠,奋笔急书,于每个烽火台写下安排书信。可想,这战事多变,丞相运筹 帷幄,给诸多烽火台定下不同计策,却也实属不易。
谁成想这送信小厮竟投靠曹操,给诸葛丞相暗中使坏。这小厮将每封书信都投错了烽火台,居然没有一封是对的。不多时小厮便被抓住,前后之事却也明朗。这可急坏了诸葛丞相,这书信传错,势必会让蜀军自乱阵脚,不攻自破啊! 诸葛丞相现在想知道被这小厮一乱,这书信传错共有多少种情况。

Input

输入一个正数n,代表丞相共写了n(1 <= n <= 20)封书信。

Output

输出书信传错的情况数。

Sample

Input 

3

Output 

2
#include <stdio.h>
#include <stdlib.h>
int main()
{
    int n,i;
    long long int f[100];
    scanf("%d",&n);
    f[1]=0;
    f[2]=1;
    for(i=3; i<=n; i++)
    {
        f[i]=(i-1)*(f[i-1]+f[i-2]);
    }
    printf("%lld\n",f[n]);

    return 0;
}

此题为错排问题错排公式为:F(n)=(n-1)*[F(n-1)+F(n-2)]

解释:若有n个人,其中有甲乙······且有n把椅子,n个人都不坐属于自己的椅子。

1.首先甲先坐,有(n-1)个选择;

2.乙再来选:(1)乙选甲的,有:F[n-2]种

                  (2)乙选除了甲之外的椅子,有:F[n-1]种

所以,总的选法的递推公式为:F(n)=(n-1)*[F(n-1)+F(n-2)]

扩充:

G - 王小二切饼

Description

王小二自夸刀工不错,有人放一张大的煎饼在砧板上,问他:“饼不许离开砧板,切n(1<=n<=100)刀最多能分成多少块?”

Input

输入切的刀数n。

Output

输出为切n刀最多切的饼的块数。

Sample

Input 

100

Output 

5051

Hint

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int n,i;
    long long int f[100];
    scanf("%d",&n);
    f[1]=2;
    for(i=2; i<=n; i++)
    {
        f[i]=f[i-1]+i;
    }
    printf("%lld\n",f[n]);

    return 0;
}

解析:

切割次数最大子子块数饼中某条直线上存在的最大子块数
011
122
243
374
4115
5166

 通过观察表中数据可知递推公式为:f[n]=f[n-1]+n ;

扩展:通项公式为:an=n*(n+1)/2+1 ;

H - C语言实验——拍皮球

Description

小瑜3岁了,很喜欢玩皮球,看来今后喜欢打篮球的^_^。最近她发现球从手中落下时,每次落地后反跳回原高度的一半,再落下,每次球落地时数球跳了几次,数到n次时爸爸在边上喊停,问小瑜现在球到底总共走了多少距离,小瑜故作沉思状,爸爸又问接下来小球能跳多高啊,小瑜摇摇头,心想还没跳我怎么知道啊,难道爸爸是神啊!这时的你在边上出主意想给小瑜写个程序计算一下,因此任务就交给你啦!假设球的初始高度为h,计算第n次落地时球经过的距离,以及落地后反弹能有多高。

Input

每行有两个数,球的初始高度h(h<=100)和球落地的次数n(n <= 10),用空格分隔。

Output

输出第n次反弹时球经过的距离和球最后的高度,保留小数点后2位。

Sample

Input 

100 1

Output 

100.00 50.00
#include <stdio.h>
#include <stdlib.h>
int main()
{
    int i;
    double s,t,m,n;
    s=0;
    scanf("%lf%lf",&m,&n);
    t=m;
    for(i=1; i<=n; i++)
    {
        s=s+m*2;
        m=m/2;
    }
    s=s-t;
    printf("%.2lf %.2lf",s,m);
    return 0;
}

I - 蟠桃记

Description

孙悟空在大闹蟠桃园的时候,第一天吃掉了所有桃子总数一半多一个,第二天又将剩下的桃子吃掉一半多一个,以后每天吃掉前一天剩下的一半多一个,到第n天准备吃的时候只剩下一个桃子。这下可把神仙们心疼坏了,请帮忙计算一下,第一天开始吃的时候一共有多少个桃子?

Input

输入包含一个正整数n(1≤n≤30),表示只剩下一个桃子的时候是在第n天发生的。

Output

输出第一天开始吃的时候桃子的总数。

Sample

Input 

2

Output 

4

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int n,i;
    long long int f[100];
    scanf("%d",&n);
    f[1]=1;
    for(i=2; i<=n; i++)
    {
        f[i]=(f[i-1]+1)*2;
    }
    printf("%lld\n",f[n]);

    return 0;
}

J - 马拦过河卒

Description

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。棋盘用坐标表示,A点(0,0)、B点(n,m)(n,m为不超过15的整数),同样马的位置坐标是需要给出的。现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

Input

一行四个数据,用空格分隔,分别表示B点的坐标和马的坐标。

Output

一个数据,表示所有的路径条数。

Sample

Input 

6 6 3 3

Output 

6
#include <stdio.h>
#include <stdlib.h>
long long int ma[30][30];
int  n, m, x, y;
int b[9][2] = {{0, 0}, {-2, -1}, {-1, -2}, {-2, 1}, {-1, 2}, {2, 1}, {1, 2}, {2, -1}, {1, -2}};

int main() {
	scanf("%d%d%d%d",&n,&m,&x,&y);
	x += 1;
	y += 1;
	n += 1;
	m += 1;
	ma[1][1] = 1;
	int j,i;
	for (i = 0; i < 9; i++) {
		ma[x + b[i][0]][y + b[i][1]] = -1;
	}
	for (i = 1; i <= n; i++) {
		for ( j = 1; j <= m; j++) {
			if (ma[i][j] != -1) {
				if (ma[i - 1][j] == -1 || ma[i][j - 1] == -1) {

						ma[i][j] += 1;
					}
				ma[i][j] += ma[i - 1][j] + ma[i][j - 1];
			}
		}
	}
	printf("%lld\n",ma[n][m]);
	return 0;
}

做递推这类题的关键是找到关系,可通过画图的方法示意会比较直接,易于观察规律~ 

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值