A - 删数问题
Description
键盘输入一个高精度的正整数n(≤100位),去掉其中任意s个数字后剩下的数字按照原来的左右次序组成一个新的正整数。编程对给定的n与s,寻找一种方案,使得剩下的数字组成的新数最小。
Input
输入两个数字,分别为原始数n,要去掉的数字数s (s < n)。
Output
输出去掉s个数后最小的数
Sample
Input
178543 4
Output
13
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
int main()
{
int i,n,len;
char s[101];
scanf("%s%d",s,&n);
while(n--)
{ i=0;
len=strlen(s);
while(i<len&&s[i]<=s[i+1])
i++;
while(i<len)
{
s[i]=s[i+1];
i++;
}
}
len=strlen(s);
i=0;
if(i<len)
{
while(i<len&&s[i]=='0')
i++;
if(i==len)
printf("0");
for(; i<len; i++)
{
printf("%c",s[i]);
}
}
else printf("0");
return 0;
}
B - 活动选择
Description
学校的大学生艺术中心周日将面向全校各个学院的学生社团开放,但活动中心同时只能供一个社团活动使用,并且每一个社团活动开始后都不能中断。现在各个社团都提交了他们使用该中心的活动计划(即活动的开始时刻和截止时刻)。请设计一个算法来找到一个最佳的分配序列,以能够在大学生艺术中心安排不冲突的尽可能多的社团活动。
比如有5个活动,开始与截止时刻分别为:
最佳安排序列为:1,4,5。
Input
第一行输入活动数目n(0<n<100);
以后输入n行,分别输入序号为1到n的活动使用中心的开始时刻a与截止时刻b(a,b为整数且0<=a,b<24,a,b输入以空格分隔)。
Output
输出最佳安排序列所包含的各个活动(按照活动被安排的次序,两个活动之间用逗号分隔),如果有多个活动安排序列符合要求输出字典序最小的序列。
Sample
Input
6 8 10 9 16 11 16 14 15 10 14 7 11
Output
1,5,4
#include <stdio.h>
#include <stdlib.h>
struct
{
int a;
int b;
int num;
} c[101],t;
int main()
{
int i,n,j;
scanf("%d",&n);
for(i=1; i<=n; i++)
{
scanf("%d%d",&c[i].a,&c[i].b);
c[i].num=i;
}
for(i=1; i<n; i++)
{
for(j=1; j<=n-i; j++)
{
if(c[j].b>c[j+1].b)
{
t=c[j];
c[j]=c[j+1];
c[j+1]=t;
}
}
}
int cnt=0,flag=0;
for(i=1; i<=n; i++)
{
while(c[i].a>=cnt)
{
cnt=c[i].b;
if(flag==0)
{
printf("%d",c[i].num);
flag=1;
}
else printf(",%d",c[i].num);
}
}
return 0;
}
C - 活动选择问题
Description
sdut 大学生艺术中心每天都有n个活动申请举办,但是为了举办更多的活动,必须要放弃一些活动,求出每天最多能举办多少活动。
Input
输入第一行为申请的活动数n(n<100),从第2行到n+1行,每行两个数,是每个活动的开始时间b,结束时间e;
Output
输出每天最多能举办的活动数。
Sample
Input
12 15 20 15 19 8 18 10 15 4 14 6 12 5 10 2 9 3 8 0 7 3 4 1 3
Output
5
#include <stdio.h>
#include <stdlib.h>
struct node {
int l;
int r;
}a[10000],t;
int main(){
int n;
scanf("%d",&n);
int i;
for(i=1;i<=n;i++){
scanf("%d%d",&a[i].l,&a[i].r);
}int j;
for(i=1;i<n;i++){
for(j=1;j<=n-i;j++){
if(a[j].r>a[j+1].r){
t=a[j+1];
a[j+1]=a[j];
a[j]=t;
}
}
}
int cnt =0;
int t=0;
for(i=1;i<=n;i++){
if(a[i].l>=t)
cnt++,t=a[i].r;
}
printf("%d",cnt);
return 0;
}
E - 最少拦截系统
Description
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但
以后每一发炮弹都不能超过前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹.
怎么办呢?多搞几套系统呗!你说说倒蛮容易,成本呢?成本是个大问题啊.所以俺就到这里来求救了,请帮助计算一下最少需要多少套拦截系统.
Input
输入包括:导弹总个数(正整数),导弹依此飞来的高度(雷达给出的高度数据是不大于30000的正整数,用空格分隔)
Output
对应输出拦截所有导弹最少要配备多少套这种导弹拦截系统.
Sample
Input
8 389 207 155 300 299 170 158 65
Output
2
Hint
SubmitSolutions
#include <stdio.h>
#include <stdlib.h>
int main()
{
int n;
while(~scanf("%d",&n))
{
int a[30001];
int i;
for(i=0;i<n;i++)
scanf("%d",&a[i]);
int flag=0,h;
for(i=0;i<n;i++)
{
if(a[i]!=0)
{
h=a[i];
for(int j=i+1;j<n;j++)
{
if(a[j]<=h&&a[j]!=0)
{
h=a[j];
a[j]=0;
}
}
flag++;
}
}
printf("%d\n",flag);
}
return 0;
}
G - 懒虫小鑫
Description
小鑫是个大懒虫,但是这一天妈妈要小鑫去山上搬些矿石去城里卖以补贴家用。小鑫十分的不开心。不开心归不开心,小鑫还是要做这件事情的。
我们把这个事情简化一下。有n块矿石,设第i块矿石由两个数字wi和pi表示。分别表示这块石头的重量和可以卖的价钱。小鑫每次只能搬一块矿石去城里卖,所以他决定每次都会搬重量最小的那块。如果恰好有几块重量相等,那就在这几块中挑选价值最高的带走。
由于路程原因。小鑫每天只能打m个来回,也就意味着他只能卖掉m块矿石。你能计算出他能得到多少钱么?
Input
第一行为n,m。m≤n≤10000。
接下来有n行,每行两个数代表石头的w与p。
Output
对于每组数据,输出有一行为一个数,为答案。
Sample
Input
4 2 1 2 1 3 2 2 3 4
Output
5
Hint
题目数据量大,建议使用较为高效的算法。
#include <stdio.h>
#include <stdlib.h>
struct {
int w;
int p;
}a[10001],t;
int main(){
int n,i,m,j;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
scanf("%d%d",&a[i].w,&a[i].p);
}
for(i=1;i<n;i++){
for(j=1;j<=n-i;j++){
if(a[j].w>a[j+1].w){
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
}
}
}
for(i=1;i<n;i++){
for(j=1;j<=n-i;j++){
if(a[j].w==a[j+1].w){
if((a[j].p/a[j].w)<(a[j+1].p/a[j+1].w)){
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
}
}
}
}
int sum=0;
for(i=1;i<=m;i++){
sum+=a[i].p;
}
printf("%d\n",sum);
return 0;
}
H - 装船问题
Description
王小二毕业后从事船运规划工作,吉祥号货轮的最大载重量为M吨,有10种货物可以装船。第i种货物有wi吨,总价值是pi。王小二的任务是从10种货物中挑选若干吨上船,在满足货物总重量小于等于M的前提下,运走的货物的价重比最大。
Input
输入数据的第一行有一个正整数M(0 < M < 10000),表示所有货物最大载重量。在接下来的10行中,每行有若干个数(中间用空格分开),第i行表示的是第i种货物的货物的总价值pi ,总重量wi。(pi是wi的整数倍,0 < pi , wi < 1000)
Output
输出一个整数,表示可以得到的最大价值。
Sample
Input
100
10 10
20 10
30 10
40 10
50 10
60 10
70 10
80 10
90 10
100 10
Output
550
Hint
价重比:计算其价值与重量之比
#include <stdio.h>
#include <stdlib.h>
struct node
{
int price,weight;
int value;
}a[11];
void putin(struct node a[])
{
int i;
for(i=0;i<10;i++)
{
scanf("%d%d",&a[i].price,&a[i].weight);
a[i].value = a[i].price/a[i].weight;
}
}
void qsort_value(struct node a[],int n)
{
int i,j;
struct node t;
for(i=0;i<n-1;i++)
{
for(j=0;j<n-1-i;j++)
{
if(a[j].value<a[j+1].value)
{
t = a[j];
a[j] = a[j+1];
a[j+1] = t ;
}
}
}
}
int main()
{
int i,M;
int sum_money = 0;
scanf("%d",&M);
putin(a);
qsort_value(a,10);
for(i=0;i<10&&M>0;i++)
{
if(a[i].weight<=M)
{
M -= a[i].weight;
sum_money += a[i].price;
}
else
{
sum_money += a[i].value*M;
break;
}
}
printf("%d\n",sum_money);
return 0;
}
I - 商人小鑫
Description
小鑫是个商人,当然商人最希望的就是多赚钱,小鑫也一样。
这天,他来到了一个遥远的国度。那里有着n件商品,对于第i件商品需要付出ci的价钱才能得到。当然,对于第i件商品,小鑫在自己心中有一个估价pi:代表着当他买下这件商品后带回他的国家可以卖出的价格。小鑫只能带回m件商品,你能帮他计算一下他最多能赚多少钱么?
Input
第一行是n,m。( 0< m ≤ n ≤ 1000000 )
紧接着有n行,每一行有两个数 c ,p。第i行代表着ci,pi。( ci ≤ pi, 保证数据都在int范围内 )
Output
输出一行一个数,代表小鑫能赚多少钱。
Sample
Input
4 2 1 2 1 3 2 2 3 4
Output
3
#include<stdio.h>
#include<string.h>
struct
{
int c,p;
} k[10000001],t;
int l[10000001];
void qsort(int left,int right)
{
int a=l[left],i=left,j=right;
if(left>right)return ;
while(i<j)
{
while(i<j&&l[j]<=a)j--;
l[i]=l[j];
while(i<j&&l[i]>=a)i++;
l[j]=l[i];
}
l[i]=a;
qsort(left,i-1);
qsort(i+1,right);
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
int i;
for(i=0; i<n; i++)
{
scanf("%d%d",&k[i].c,&k[i].p);
l[i]=k[i].p-k[i].c;
}
qsort(0,n-1);
int sum=0;
for(i=0; i<m; i++)
{
sum+=l[i];
}
printf("%d\n",sum);
}
return 0;
}
J - 商人的诀窍
Description
E_star和von是中国赫赫有名的两位商人,俗话说的好无商不奸,最近E_star需要进一批苹果。可是他需要的苹果只有von才有,von的苹果都存在他的传说中很牛叉的仓库里,每个仓库都存了不同种类的苹果,而且每个仓库里的苹果的价钱不同。如果E_star想要买仓库i里的所有重量为f[i]的苹果他必须付m[i]的金钱。E_star开着他的传说中的毛驴车去拉苹果,而且他只带了N些金钱。E_star作为传说中的奸商希望用它所带的N金钱得到重量最多的苹果。你作为他最好的朋友,所以他向你求出帮助。希望你能帮忙计算出他能买到最多的苹果(这里指重量最大)。并输出最大重量。
提示:这里仅考虑仓库里苹果的重量,不考虑个数。
Input
第一行包括两个非负整数N,M(分别代表E_star带的金币数,von盛苹果的仓库数量,不超过50)。
接下来有M行,每行包括两个数非负整数f[i]和m[i]分别表示第i仓库里存有重量为f[i]的苹果,如果将所有苹果买下要花费m[i]的金钱,E_star不必非要将每个仓库的苹果全部买下。
Output
E_star用N的金币所能买到的最大重量的苹果的重量。结果保留三位小数。
Sample
Input
20 3 25 18 24 15 15 10
Output
31.500
#include<stdio.h>
#include<stdlib.h>
struct node
{
int w;
int p;
double q;
}a[51],t;
int main()
{
int n,m,i,j,b;
double sum;
while(~scanf("%d %d",&n,&m))
{
if(n==-1||m==-1)
return 0;
sum=0;
b=0;
for(i=0;i<m;i++)
{
scanf("%d %d",&a[i].w,&a[i].p);
a[i].q=a[i].p*1.0/a[i].w;
b=b+a[i].p;
}
if(b<=n)
{
for(i=0;i<m;i++)
{
sum=sum+a[i].w;
}
}
else
{
for(i=0;i<m;i++)
{
for(j=i+1;j<m;j++)
{
if(a[i].q>a[j].q)
{
t=a[i];
a[i]=a[j];
a[j]=t;
}
}
}
for(i=0;i<m;i++)
{
if(a[i].p<=n)
{
sum=sum+a[i].w;
n=n-a[i].p;
}
else
{
sum=sum+(n*1.0/a[i].q);
break;
}
}
}
printf("%.3lf\n",sum);
}
return 0;
}