齐次线性方程组存在非零解的条件的探究


前言

多亏了我们的现代老师,才有了这个栏目,线代的某些理论既抽象又难懂,所以我想在此我用比较容易理解的方法来证明一些定理。今天的探究对象就是齐次线性方程组存在非零解的条件。


二、线性方程组

在实际问题中,我们常常需要求解一些未知的量,通常我们用 x x x加上数字作为下标来表示他们,然后根据问题中的等量关系列出方程组。

其中最简单、最常见的一类方程组是一次方程组,我们通常称他们为线性方程组。下面给出线性方程组的一般模型:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ ⋯ a s 1 x 1 + a s 2 x 2 + ⋯ + a s n x n = b s \begin{cases} a_{11}x_1+a_{12}x_2+ \cdots +a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\cdots +a_{2n}x_n=b_2\\ \cdots\qquad\cdots\qquad\cdots\qquad\cdots\qquad\cdots\\ a_{s1}x_1+a_{s2}x_2+ \cdots+a_{sn}x_n=b_s \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2as1x1+as2x2++asnxn=bs
其中每个方程左端都是 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn一次齐次式,右端是常数。与未知数相乘的是系数,其中 a i j a_{ij} aij为第 i i i个方程中第 x j x_j xj的系数( i = 1 , 2 , ⋯   , s , j = 1 , 2 , ⋯   , n i=1,2,\cdots,s,j=1,2,\cdots,n i=1,2,,s,j=1,2,,n)。

对于上述的 n n n元方程组,如果未知量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn分别用数 c 1 , c 2 , ⋯   , c n c_1,c_2,\cdots,c_n c1,c2,,cn 代入后,每个方程都变为恒等式,那么我们把数组 c 1 , c 2 , ⋯   , c n c_1,c_2,\cdots,c_n c1,c2,,cn称为上述方程组的一个解,而方程组所有的解的集合就称为解集

三、Guass消元法

那么我们应该如何解方程呢?我们先看一个具体的例子吧。
{ 2 x 1 + 2 x 2 − 3 x 3 = 2 2 x 1 + 3 x 2 − x 3 = 3 2 x 1 + x 2 − x 3 = 5 (1) \begin{cases} 2x_1+2x_2-3x_3=2\\ 2x_1+3x_2-x_3=3\\ 2x_1+x_2-x_3=5\\ \end{cases}\tag1 2x1+2x23x3=22x1+3x2x3=32x1+x2x3=5(1)
通过高中的学习我们很清楚解方程组的基本思想就是消元,于是我们可以将上述方程组的第一个方程的 − 1 -1 1倍加到第二和第三个方程上去得:
{ 2 x 1 + 2 x 2 − 3 x 3 = 2 x 2 + 2 x 3 = 1 − x 2 + 2 x 3 = 3 \begin{cases} 2x_1+2x_2-3x_3=2\\ x_2+2x_3=1\\ -x_2+2x_3=3\\ \end{cases} 2x1+2x23x3=2x2+2x3=1x2+2x3=3
再把第二个方程加到第三个方程上去得:
{ 2 x 1 + 2 x 2 − 3 x 3 = 2 x 2 + 2 x 3 = 1 x 3 = 1 (2) \begin{cases} 2x_1+2x_2-3x_3=2\\ x_2+2x_3=1\\ x_3=1\\ \end{cases}\tag2 2x1+2x23x3=2x2+2x3=1x3=1(2)
我们将像(2)一样形状的方程称为阶梯型方程组

从解方程这么多年的经验中我们不难看出我们可以对线性方程组做出如下三种变换:
1 1\qquad 1把一个方程的倍数加到另一个方程上
2 2\qquad 2交换两个方程的位置
3 3\qquad 3用一个非零的数乘以某一个方程

这三种变换称为线性方程组的初等变换。经过初等变换,把原方程组变为阶梯型方程组,然后去解阶梯型方程组(从下往上),求得的解就是原方程组的解。这种解方程的方法就是高斯消元法

四、矩阵及其初等变换

在上述解方程的过程中我们只是对方程组的系数与常数项进行了运算,所以为了书写方便我们就用矩阵来表示一个方程组,将方程组的系数与常数项按照次序排成一个表,这张表就是增广矩阵,如果只列出系数,则称为系数矩阵。上述方程组的增广矩阵和系数矩阵为:

( 2 2 − 3 2 2 − 3 − 1 3 2 1 − 3 5 ) , ( 2 2 − 3 2 − 3 − 1 2 1 − 3 ) \left(\begin {array}{c} 2 &2 &-3 &2\\ 2& -3&-1 &3 \\ 2&1&-3 &5 \\ \end{array}\right) , \left(\begin {array}{c} 2 &2 &-3 \\ 2&-3 &-1 \\ 2 &1&-3 \\ \end{array}\right) 222231313235 , 222231313
按照方程组的变换方式,我们可以同样也可以把增广矩阵进行如下三种初等变换:
1 1\qquad 1把一行的倍数加到另一行上
2 2\qquad 2交换两行的位置
3 3\qquad 3用一个非零的数乘以某一行

接着有阶梯型方程组所对应的矩阵被称为阶梯型矩阵,其特点是:
1 1\qquad 1元素全为0的行在下方(如果有零行的话)
2 2\qquad 2元素不全为0的行,从左边数第一个不为零的元素称为主元,而且主元的列指标随行指标的递增而不断递增

与此同时我们也将阶梯型方程组做出如下定义:阶梯型方程组中每个方程组的第一个元素称为领头未知量,领头未知量确定完毕后剩下的就是自由未知量,这对我们接下来的证明会很有帮助。

五、线性方程组的解的情况及其判别依据

对于一个线性方程组我们可以想象出其解存在三种情况。以阶梯型方程组表示则有:

  1. 有无穷多解
    例如: { x 1 + 2 x 2 − 3 x 3 = 2 x 3 = 1 (1) \begin{cases} x_1+2x_2-3x_3=2\\ x_3=1\\ \end{cases}\tag1 {x1+2x23x3=2x3=1(1)
  2. 有唯一解
    例如: { x 1 + 2 x 2 = 2 x 2 = 1 (2) \begin{cases} x_1+2x_2=2\\ x_2=1\\ \end{cases}\tag2 {x1+2x2=2x2=1(2)
  3. 无解
    例如: { x 1 + 2 x 2 + x 3 + x 4 = 2 − 2 x 2 − 8 x 4 = − 6 0 = 1 (3) \begin{cases} x_1+2x_2+x_3+x_4=2\\ -2x_2-8x_4=-6\\ 0=1\\ \end{cases}\tag3 x1+2x2+x3+x4=22x28x4=60=1(3)

通过上述三个例子我们不难发现

  1. 如果阶梯型方程组中出现了“ 0 = 1 0=1 0=1 ",则该方程组必定无解

  2. 如果阶梯型方程组中出现了自由未知量但无“ 0 = 1 0=1 0=1 ",则该方程组必定有无穷多解。因为我们可以通过让自由未知量取任意值来让领头未知量有不同的值,从而让方程组纯在无穷多个解的效果

  3. 如果方程组中无自由未知量且没有出现“ 0 = 1 0=1 0=1 ",则该方程组必定有唯一解

我想这种判断依据应该能够比较简单的表现出线性方程组解的情况以及判断依据。

因此对于一般的线性方程组我们总可以将他化成阶梯型方程组,然后根据自由未知量和 0 = 1 0=1 0=1来判断他的解的情况。

六、齐次线性方程组的解的情况及其判别依据

齐次线性方程组是一种比较特殊的线性方程组,其常数项全为零,所以我们也没有必要研究他的增广矩阵,取而代之的是研究他的系数矩阵。如:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋯ ⋯ ⋯ ⋯ ⋯ a s 1 x 1 + a s 2 x 2 + ⋯ + a s n x n = 0 \begin{cases} a_{11}x_1+a_{12}x_2+ \cdots +a_{1n}x_n=0\\ a_{21}x_1+a_{22}x_2+\cdots +a_{2n}x_n=0\\ \cdots\qquad\cdots\qquad\cdots\qquad\cdots\qquad\cdots\\ a_{s1}x_1+a_{s2}x_2+ \cdots+a_{sn}x_n=0 \end{cases} a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0as1x1+as2x2++asnxn=0

另外不得不说的是齐次线性方程组总是存在解,因为大不了 x x x全部取0嘛,但是这种解对于我们来说作用不大,我们更加关注的还是齐次线性方程组的非零解。

类比线性方程组,我们将无解的情况去掉既是齐次线性方程组的解的判断依据。即:

  1. 如果阶梯型方程组中出现了自由未知量,则该齐次线性方程组必定有无穷多解

  2. 如果方程组中无自由未知量且没有出现,则该齐次线性方程组必定有唯一解。

因此我们就可以证明书中的定理:
m < n m<n m<n,则齐次线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋯ ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 \begin{cases} a_{11}x_1+a_{12}x_2+ \cdots +a_{1n}x_n=0\\ a_{21}x_1+a_{22}x_2+\cdots +a_{2n}x_n=0\\ \cdots\qquad\cdots\qquad\cdots\qquad\cdots\qquad\cdots\\ a_{m1}x_1+a_{m2}x_2+ \cdots+a_{mn}x_n=0 \end{cases} a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0
存在非零解。

证明:

上述齐次线性方程组经过初等变换化为阶梯型方程组后,至多存在 m m m个领头未知量,因而通解中至少会存在 n − m n-m nm个自由未知量。只要齐次线性方程组的阶梯型方程组出现自由未知量,则方程组必定存在非零解。

特别的当 m = n m=n m=n时,根据克莱姆法则,如果齐次线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋯ ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = 0 \begin{cases} a_{11}x_1+a_{12}x_2+ \cdots +a_{1n}x_n=0\\ a_{21}x_1+a_{22}x_2+\cdots +a_{2n}x_n=0\\ \cdots\qquad\cdots\qquad\cdots\qquad\cdots\qquad\cdots\\ a_{n1}x_1+a_{n2}x_2+ \cdots+a_{nn}x_n=0 \end{cases} a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0an1x1+an2x2++annxn=0
的系数矩阵 A = ( a i j ) n × n A=(a_{ij})_{n×n} A=(aij)n×n的行列式 ∣ A ∣ ≠ 0 |A|≠0 A=0,则上述方程组只有零解。

证明:
A = [ a 11 a 12 a 13 ⋯ a 1 n a 21 a 22 a 23 ⋯ a 2 n a 31 a 32 a 33 ⋯ a 3 n ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 a n 3 ⋯ a n n ] A=\begin{bmatrix} {a_{11}}&{a_{12}}&{a_{13}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{a_{23}}&{\cdots}&{a_{2n}}\\ {a_{31}}&{a_{32}}&{a_{33}}&{\cdots}&{a_{3n}}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{a_{n3}}&{\cdots}&{a_{nn}}\\ \end{bmatrix} A= a11a21a31an1a12a22a32an2a13a23a33an3a1na2na3nann
可以通过初等变换化为阶梯型行列式B
B = [ b 11 b 12 b 13 ⋯ b 1 n b 21 b 22 b 23 ⋯ b 2 n b 31 b 32 b 33 ⋯ b 3 n ⋮ ⋮ ⋮ ⋱ ⋮ b n 1 b n 2 b n 3 ⋯ b n n ] B=\begin{bmatrix} {b_{11}}&{b_{12}}&{b_{13}}&{\cdots}&{b_{1n}}\\ {b_{21}}&{b_{22}}&{b_{23}}&{\cdots}&{b_{2n}}\\ {b_{31}}&{b_{32}}&{b_{33}}&{\cdots}&{b_{3n}}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {b_{n1}}&{b_{n2}}&{b_{n3}}&{\cdots}&{b_{nn}}\\ \end{bmatrix} B= b11b21b31bn1b12b22b32bn2b13b23b33bn3b1nb2nb3nbnn
虽然我们不知道 ∣ B ∣ |B| B的每个元素的值,但我们能够推断出 B B B的 非零行数 r ≤ n r\leq n rn
我们分两种情况讨论。

  1. B B B 的非零行数 r = n r=n r=n
    设各非零行的首元素依次为: b 1 j 1 , b 2 j 2 , b 3 , j 3 , ⋯   , b n , j n b_{1j_{1}},b_{2j_{2}},b_{3,j_{3}},\cdots,b_{n,j_{n}} b1j1,b2j2,b3,j3,,bn,jn
    根据阶梯型行列式的定义可知 1 ≤ j 1 < j 2 < ⋯ < j n ≤ n 1 \leq j_{1}<j_{2}<\cdots<j_{n} \leq n 1j1j2jnn
    显然有: j 1 = 1 , j 2 = 2 , ⋯   , j n = n j_{1}=1,j_{2}=2,\cdots,j_{n}=n j1=1,j2=2,,jn=n
    根据行列式的性质:
    ∣ A ∣ = [ a 11 a 12 a 13 ⋯ a 1 n a 21 a 22 a 23 ⋯ a 2 n a 31 a 32 a 33 ⋯ a 3 n ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 a n 3 ⋯ a n n ] = [ b 11 b 12 b 13 ⋯ b 1 n 0 b 22 b 23 ⋯ b 2 n 0 0 b 33 ⋯ b 3 n ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ b n n ] = b 11 b 22 ⋯ b n n ≠ 0 |A|=\begin{bmatrix} {a_{11}}&{a_{12}}&{a_{13}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{a_{23}}&{\cdots}&{a_{2n}}\\ {a_{31}}&{a_{32}}&{a_{33}}&{\cdots}&{a_{3n}}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{a_{n3}}&{\cdots}&{a_{nn}}\\ \end{bmatrix}=\begin{bmatrix} {b_{11}}&{b_{12}}&{b_{13}}&{\cdots}&{b_{1n}}\\ 0&{b_{22}}&{b_{23}}&{\cdots}&{b_{2n}}\\ 0&0&{b_{33}}&{\cdots}&{b_{3n}}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ 0&0&0&{\cdots}&{b_{nn}}\\ \end{bmatrix}=b_{11}b_{22}\cdots b_{nn}≠0 A= a11a21a31an1a12a22a32an2a13a23a33an3a1na2na3nann = b11000b12b2200b13b23b330b1nb2nb3nbnn =b11b22bnn=0

2. B B B 的非零行数 r < n r<n rn
r < n r<n r<n 可知,最后的 b n n b_{nn} bnn必定为0.
∣ A ∣ = 0 |A|=0 A=0

综上我们就证明了为什么n个齐次线性方程组的系数行列式为0时存在非零解。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值