最长上升/不下降子序列问题原理+二分解法(LIS)与最长公共子序列问题(LCS)

前置知识
lower_bound(开始位置,结束位置,查找的数)返回小于等于查找数的第一个数的地址
upper_bound(开始位置,结束位置,查找的数)返回比查找数小的第一个数的地址

最长上升子序列朴素解法O(n²)
例: arr[i]: 8 4 2 5 3 9 1 6 7
例: dp[i]: 1 1 1 2 2 3 1 3 4

对于这组数据开一个dp数组,用于存当前位置的最大上升子序列长度,先看一段代码

对arr数组中的每一个数都要倒序向前找一次最大的dp值,dp[i]=max(dp[i],dp[j]+1)是找到0到i-1中最大dp值,因为在arr[i]>=arr[j]与从后往前两个条件下找到的序列一定是上升的序列,倒序是因为要将数加入序列一定是从后往前比较,如果从前往后比较就成了找前边有几个数比这个数大了。


最长上升子序列二分解法O(nlogn)

还是用上边的例子:arr[i]: 8 4 2 5 3 9 1 6 7

这里用到了数据结构中的栈,先创建一个空栈,再将数组的第一个数入栈,再遍历一遍数组,遍历过程中,如果当前数小于栈顶元素,则在栈中找到比当前数大的第一个数并替换掉他,如果当前数大于栈顶元素则将该元素入栈,最后栈里留下的就是最长上升子序列,如果入栈的判定条件是大于等于,则就成了最长不下降子序列,附上代码理解。

朴素解法在一些极端情况下可能会超时,采用二分能将查找的时间复杂度由O(n)缩减到O(logn)


最长公共子序列问题

原理上这个问题是用动态规划解决的,首先看一下状态转移方程:

例: str1: aabcddd
例: str2: acdde

则整个过程中dp数组的信息如下表:

dp

i=1

i=2

i=3

i=4

i=5

i=6

i=7

j=1

1

1

1

1

1

1

1

j=2

1

1

1

2

2

2

2

j=3

1

1

1

2

3

3

3

j=4

1

1

1

2

3

4

4

j=5

1

1

1

2

3

4

4

简而言之就是动态规划源于上一步的思想,若str1[i]与str2[j]匹配则可以直接继承str1[i-1]与str2[j-1]的状态,不匹配则在str1[i]与str2[j-1]和str1[i-1]与str2[j]的两种匹配状态中取最优解。


希望我的理解能帮到各位。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

㼯銘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值