离散数学第7章图论基础知识总结

图的基本概念(自己检测填):

图的定义:g=(点,边)

关联:

图的分类:

领接结点:

环:

孤立点:

度(deg):

平行边:

结点的出度:

结点的入度:

悬挂结点:

定理:

\Sigma d(n)=2e

度数为奇数的结点必是偶数个

有向图中,出度数=入度数=边数(e)

概念题:

无向图,顶点v和边e相等,2度结点3个,3度结点2个,其他是悬挂结点,求v,e;

列:v=e 2e=2*3+3*2+v-5

n阶无项简单图:

n=结点数;简单图:不含平行边,不含环

总结:

弄清楚,点,边,度的关系:

度的总和=2边

度的总和=\Sigma每个点*该点的度(边点互化定理——自己起的名字)

通路,回路,联通的概念:

基本通路:点没有重复(基本通路) 记忆:基本点

简单通路:边没有重复(简单通路)

回路:

基本回路:

简单回路:

连通图:在无向图图中,任意两个结点都有一条通路

可达性:有向图中,任意两个结点v1,v2,假如从v1到v2存在通路,则v1到v2是可达的,且从v1到v2存通路,则称v1和v2相互可达。(规定一个结点到自己总是可达的)

有项连通图分类:下面3种

定义有向图g

单项联通:如果g任意两个结点至少从一个结点到另一个结点是可达的,则称g是单项联通

强联通:任意两个结点相互可达

弱联通:g在略去有向边的方向后得到的无向图是联通

用矩阵找通路,回路,可达

邻接矩阵:n*n矩阵A

其中aij=vi到vj长度为1的个数

A的n次方中,aij=vi到vj长度为n的个数

如何画可达矩阵:

离散数学》课程是信息与计算科学专业的专业基础课程,也是应用性很强的一门数学课。离散数学是现代数学的一个重要分支,它是以数理逻辑、集合论、关系与函数、代数结构与布尔代数为讲授对象。是理论性较强、应用性较广、集理论性与应用性为一体的学科。 设置本课程的目的是:通过本课程的学习,使学生了解和掌握关于离散数学基本概念及其相关理论,以现代数学的方法,初步掌握处理离散结构所必须的一些基本数学工具和方法,为后继课程的学习作必要的理论准备。同时也要培养学生抽象思维、逻辑推理,符号演算和慎密概括的能力,从而使学生具有良好的专业理论素质,提高学生分析和解决实际问题的能力。 学习本课程的要求是:(1) 学习数理逻辑最基本的内容,掌握命题逻辑及谓词逻辑的基本概念,掌握命题演算的方法,掌握命题推理及谓词推理的基本理论,并会用推理理论进行逻辑论证。(2) 学习集合论的基本概念及性质,掌握集合运算及证明的基本理论和方法;学习二元关系的概念与性质,掌握等价关系和偏序关系,并使学生从更高层次理解函数。(3) 学习代数系统的基本知识,掌握二元运算的定义和性质,了解代数系统的子代数和积代数、同态与同构等概念,掌握半群、幺半群、群、环、域和格、布尔代数等代数系统的定义及其性质。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

0x3f3f3f3f3f

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值