图的基本概念(自己检测填):
图的定义:g=(点,边)
关联:
图的分类:
领接结点:
环:
孤立点:
度(deg):
平行边:
结点的出度:
结点的入度:
悬挂结点:
定理:
度数为奇数的结点必是偶数个
有向图中,出度数=入度数=边数(e)
概念题:
无向图,顶点v和边e相等,2度结点3个,3度结点2个,其他是悬挂结点,求v,e;
列:v=e 2e=2*3+3*2+v-5
n阶无项简单图:
n=结点数;简单图:不含平行边,不含环
总结:
弄清楚,点,边,度的关系:
度的总和=2边
度的总和=每个点*该点的度(边点互化定理——自己起的名字)
通路,回路,联通的概念:
基本通路:点没有重复(基本通路) 记忆:基本点
简单通路:边没有重复(简单通路)
回路:
基本回路:
简单回路:
连通图:在无向图图中,任意两个结点都有一条通路
可达性:有向图中,任意两个结点v1,v2,假如从v1到v2存在通路,则v1到v2是可达的,且从v1到v2存通路,则称v1和v2相互可达。(规定一个结点到自己总是可达的)
有项连通图分类:下面3种
定义有向图g
单项联通:如果g任意两个结点至少从一个结点到另一个结点是可达的,则称g是单项联通
强联通:任意两个结点相互可达
弱联通:g在略去有向边的方向后得到的无向图是联通
用矩阵找通路,回路,可达
邻接矩阵:n*n矩阵A
其中aij=vi到vj长度为1的个数
A的n次方中,aij=vi到vj长度为n的个数
如何画可达矩阵: