机器学习——主成分分析(PCA)

本文详细介绍了主成分分析(PCA)的基本概念,包括主成分、方差解释率、特征值和特征向量等,以及PCA在数据预处理、协方差矩阵计算、降维过程中的应用。通过实例展示了如何使用Python的sklearn库进行PCA算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、基本概念

二、基本步骤

三、算法实现

四、总结


一、基本概念

主成分分析(PCA)是一种用于数据降维和特征提取的统计方法。

主成分:主成分是PCA得到的一组新的变量,它们是原始变量的线性组合。每个主成分都是原始数据中方差最大的方向,按照方差的降序排列。主成分之间是相互正交的。

方差解释率:方差解释率是指每个主成分所占的方差在总方差中的比例。通常我们会选择方差解释率较高的前几个主成分,以保留较多的信息。

特征值和特征向量:在PCA中,通过对协方差矩阵进行特征值分解,可以得到一组特征值和对应的特征向量。特征值表示了变量在特征向量方向上的方差特征向量则表示了对应特征值的主成分方向

投影矩阵:投影矩阵是由选取的主成分的特征向量组成的矩阵。通过将原始数据与投影矩阵相乘,可以将数据映射到低维空间中。

主成分分析通过将高维数据映射到低维空间中,可以减少数据的维度,同时保留较多的信息。它广泛应用于数据可视化、特征提取、数据压缩等领域。

二、基本步骤

1.对数据进行预处理:首先需要对原始数据进行预处理,包括去除均值、标准化等操作,以消除数据间的量纲和尺度差异。

2.计算协方差矩阵:对预处理后的数据进行协方差矩阵的计算,协方差矩阵反映了变量之间的相关性。

3.计算特征值和特征向量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值