目录
一、基本概念
主成分分析(PCA)是一种用于数据降维和特征提取的统计方法。
主成分:主成分是PCA得到的一组新的变量,它们是原始变量的线性组合。每个主成分都是原始数据中方差最大的方向,按照方差的降序排列。主成分之间是相互正交的。
方差解释率:方差解释率是指每个主成分所占的方差在总方差中的比例。通常我们会选择方差解释率较高的前几个主成分,以保留较多的信息。
特征值和特征向量:在PCA中,通过对协方差矩阵进行特征值分解,可以得到一组特征值和对应的特征向量。特征值表示了变量在特征向量方向上的方差,特征向量则表示了对应特征值的主成分方向。
投影矩阵:投影矩阵是由选取的主成分的特征向量组成的矩阵。通过将原始数据与投影矩阵相乘,可以将数据映射到低维空间中。
主成分分析通过将高维数据映射到低维空间中,可以减少数据的维度,同时保留较多的信息。它广泛应用于数据可视化、特征提取、数据压缩等领域。
二、基本步骤
1.对数据进行预处理:首先需要对原始数据进行预处理,包括去除均值、标准化等操作,以消除数据间的量纲和尺度差异。
2.计算协方差矩阵:对预处理后的数据进行协方差矩阵的计算,协方差矩阵反映了变量之间的相关性。
3.计算特征值和特征向量