数据
Date Value
09/12/16 1324.60
10/03/16 1313.30
11/01/16 1288.45
12/01/16 1161.85
01/03/17 1151.00
02/01/17 1203.65
03/01/17 1240.40
04/03/17 1247.25
05/02/17 1255.45
06/01/17 1264.85
07/03/17 1229.25
08/01/17 1270.95
09/01/17 1320.40
10/02/17 1273.70
11/01/17 1277.05
12/01/17 1275.50
01/02/18 1312.05
02/01/18 1341.35
03/01/18 1307.75
04/03/18 1333.45
05/01/18 1307.10
06/01/18 1294.60
07/02/18 1247.80
08/01/18 1219.00
09/03/18 1200.05
10/01/18 1189.35
11/01/18 1231.15
12/03/18 1230.30
01/02/19 1282.90
02/01/19 1318.70
03/01/19 1311.95
04/01/19 1293.50
05/01/19 1283.80
06/03/19 1317.10
07/01/19 1390.10
08/01/19 1406.80
09/02/19 1525.95
10/01/19 1473.45
11/01/19 1508.80
12/02/19 1461.15
01/02/20 1527.10
02/03/20 1574.75
03/02/20 1599.65
04/01/20 1576.55
05/01/20 1686.25
06/01/20 1730.60
07/01/20 1771.05
08/03/20 1958.55
09/01/20 1972.35
10/01/20 1902.00
11/02/20 1889.90
12/01/20 1810.75
01/04/21 1943.20
02/01/21 1862.95
03/01/21 1734.15
04/01/21 1726.05
05/04/21 1797.75
06/01/21 1899.35
07/01/21 1781.50
08/02/21 1811.45
09/10/21 1794.60
步骤
1、定义日期标示变量:即先将序列的时间定义好,才能分析其时间特征。
2、了解序列发展趋势:即序列图,确定乘性还是加性。
如何根据序列图来判断模型的乘性或加性?
如果随着时间的推移,序列的季节波动变得越来越大,则建议使用乘法模型。如果序列的季节波动能够基本维持恒定,则建议使用加法模型。
3、进行季节因素分解。
**ERR(误差序列):**从时间序列中移除季节因素、长期趋势、和循环变动之后留下的序列,也就是原始序列中的不规则变动构成的序列。
**SAS(季节因素校正后序列):**是移除原始序列中的季节因素后的校正序列。
**SAF(季节因子):**是从序列中分解出的季节因素。其中的变量值根据季节周期的变动进行重复,如本例中季节周期为12个月,所以这些季节因子没12个月重复一次。
**STC(长期趋势和循环变动趋势):**这是原始序列中长期趋势和循环变动构成的序列。
周期为12个月,季节因子12个月循环一次。
完成季节因素分解后的序列和原始序列之间有什么差异?
通过回执序列图的方法把原始序列和除去季节因子的三个序列(误差序列、季节因素校正后序列、长期无视和循环变动序列)进行比较。
做四个序列图,会有四个变量:
1 原始序列:使用变量USD
2 误差序列:使用变量ERR
3 季节因素校场后序列:使用变量SAS
4 长期趋势和循环变动序列:使用变量STC
因为误差序列数值非常小,所以长期趋势和循环变动序列(长期趋势+循环变动)与季节因素校正后序列(长期趋势+循环变动+不规则变动,即误差)能够基本重合。
在单独做 季节因子SAF 的序列图:
通过对原始序列的季节分解,我们更好的掌握了原始序列所包含的时间特征,从而选用适当的模型进行预测。
4、建模
5、分析结果解读
该表主要通过 R方 或 平稳R方 来评估模型拟合度,以及在多个模型时,通过比较统计量找到最优模型。
6、预测
未来一年是到2022年12月,手动输入即可。
这是未来一年的趋势。
如果想从全局来观察预测趋势,可以在把这一年的趋势和以前的数据连接起来。
原始的 和 2022年预测的