【时间序列分析】实验1

实验要求:

绘制出两组数据的时序图和自相关图

 

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from statsmodels.graphics.tsaplots import plot_acf

plt.rcParams['font.sans-serif'] = ['Songti SC']
plt.rcParams['axes.unicode_minus'] = False  # 显示负号和中文

xlsx_file_path = 'co2数据.xlsx'
df = pd.read_excel(xlsx_file_path, header=None)

df_t = df.T

# 合并数据列为一个时间序列
data_series = df_t.values.flatten()

# 添加时间信息作为横坐标
dates = pd.date_range(start='1975-01', periods=len(data_series), freq='M')

# 绘制一条曲线
plt.plot(dates, data_series, label='Data')

# 添加标签和标题
plt.xlabel('Time')
plt.ylabel('Values')
plt.title('Data Over Time')

# 设置x轴日期格式
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))

# 自动调整日期间隔
plt.gcf().autofmt_xdate()

# 显示图例
plt.legend()

# 创建自相关图
plt.figure()  # 创建新的图形
plot_acf(data_series, lags=20)  # 调整 lags 参数为你希望显示的滞后阶数

# 显示图表
plt.show()
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from statsmodels.graphics.tsaplots import plot_acf

plt.rcParams['font.sans-serif'] = ['Songti SC']
plt.rcParams['axes.unicode_minus'] = False  # 显示负号和中文

xlsx_file_path = '用电量数据.xlsx'
df = pd.read_excel(xlsx_file_path, header=None)

df_t = df.T

# 忽略第一行和第一列的数据
data_series = df_t.iloc[1:, 1:].values.flatten()

# 添加时间信息作为横坐标
dates = pd.date_range(start='2000-01', periods=len(data_series), freq='M')

# 绘制一条曲线
plt.plot(dates, data_series, label='Data', color='deeppink')

# 添加标签和标题
plt.xlabel('Time')
plt.ylabel('Values')
plt.title('Data Over Time')

# 设置x轴日期格式
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))

# 自动调整日期间隔
plt.gcf().autofmt_xdate()

# 显示图例
plt.legend()

# 创建自相关图
plt.figure()  # 创建新的图形
plot_acf(data_series, lags=20, color ='red')  # 调整 lags 参数为你希望显示的滞后阶数

# 显示图表
plt.show()

 

图像结果:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值