实验要求:
绘制出两组数据的时序图和自相关图
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from statsmodels.graphics.tsaplots import plot_acf
plt.rcParams['font.sans-serif'] = ['Songti SC']
plt.rcParams['axes.unicode_minus'] = False # 显示负号和中文
xlsx_file_path = 'co2数据.xlsx'
df = pd.read_excel(xlsx_file_path, header=None)
df_t = df.T
# 合并数据列为一个时间序列
data_series = df_t.values.flatten()
# 添加时间信息作为横坐标
dates = pd.date_range(start='1975-01', periods=len(data_series), freq='M')
# 绘制一条曲线
plt.plot(dates, data_series, label='Data')
# 添加标签和标题
plt.xlabel('Time')
plt.ylabel('Values')
plt.title('Data Over Time')
# 设置x轴日期格式
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
# 自动调整日期间隔
plt.gcf().autofmt_xdate()
# 显示图例
plt.legend()
# 创建自相关图
plt.figure() # 创建新的图形
plot_acf(data_series, lags=20) # 调整 lags 参数为你希望显示的滞后阶数
# 显示图表
plt.show()
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from statsmodels.graphics.tsaplots import plot_acf
plt.rcParams['font.sans-serif'] = ['Songti SC']
plt.rcParams['axes.unicode_minus'] = False # 显示负号和中文
xlsx_file_path = '用电量数据.xlsx'
df = pd.read_excel(xlsx_file_path, header=None)
df_t = df.T
# 忽略第一行和第一列的数据
data_series = df_t.iloc[1:, 1:].values.flatten()
# 添加时间信息作为横坐标
dates = pd.date_range(start='2000-01', periods=len(data_series), freq='M')
# 绘制一条曲线
plt.plot(dates, data_series, label='Data', color='deeppink')
# 添加标签和标题
plt.xlabel('Time')
plt.ylabel('Values')
plt.title('Data Over Time')
# 设置x轴日期格式
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
# 自动调整日期间隔
plt.gcf().autofmt_xdate()
# 显示图例
plt.legend()
# 创建自相关图
plt.figure() # 创建新的图形
plot_acf(data_series, lags=20, color ='red') # 调整 lags 参数为你希望显示的滞后阶数
# 显示图表
plt.show()
图像结果: