【超全整理/图文】windows环境下安装CUDA(失败可解决)+CUDNN+Anaconda+pytorch(GPU)

目录

一、安装显卡驱动(已安装则跳过该步骤)

1、右键点击“此电脑”–“管理”–“设备管理器”–“显示适配器”–查看显卡型号

2、官网下载显卡驱动:根据显卡型号选择对应的驱动

二、查看电脑支持CUDA版本(两种方式选其一)

方法一:终端查看

方法二:NVDIA控制面板查看

三、CUDA的安装与配置

1、CUDA官网进行安装

解决方式一:卸载安全助手,等待CUDA安装结束后才可再重新安装安全助手。

解决方式二:关闭defender smartscreen(win10)

解决方式三:通过自定义的方式取消Visual Studio Intergration进行安装。

解决方式四:通过自定义的方式取消除CUDA以外的程序安装。

解决方式五:上述仍无法解决,可参考下面的链接进行解决。

2.在CMD中检测CUDA是否安装成功,输入nvcc -V回车。

四、cuDNN安装与配置

1.进入到cuDNN官网:cuDNN 9.5.1 Downloads | NVIDIA Developer

2、CUDNN的安装与配置

(1)下载好CUDNN的压缩包后进行解压

(2)将CUDNN内文件全部复制到CUDA对应文件夹内

(3)编辑环境变量

(4)检查CUDNN是否安装成功

五、Anaconda安装

1、打开下载Anaconda的网址进行下载(两种方式选一种即可)

方式一:前往Anaconda官网

方式二:使用清华源下载:

2、一直点击Next默认安装,注意安装路径不能有中文和空格,直到Finish安装完成。

3、配置清华源

(1)进入base环境:

(2)(base环境下)添加镜像,依次输入下面几条命令:

(3)(base环境下)设置搜索时显示通道地址

4、配置环境变量

(1)系统--->高级系统设置--->环境变量

(2)点击系统变量中的path,再点击新建,确保包含以下路径:

5、验证Annconda是否安装成功

(1)查看python版本

(2)查看Anaconda中python的环境

六、pytorch安装

1、(base环境下)创建名字为pytorch,python版本为3.8的虚拟环境

2、登录PyTorch官网地址:Previous PyTorch Versions | PyTorch

3、验证pytorch是否安装成功

七、自行下载需要的各种库

1、(在pytorch环境下)输入安装所需的各种库:

2、验证是否下载成功



一、安装显卡驱动(已安装则跳过该步骤)

1、右键点击“此电脑”–“管理”–“设备管理器”–“显示适配器”–查看显卡型号

61f815cdf6a645e08d2a187bc2b218db.png

2、官网下载显卡驱动:根据显卡型号选择对应的驱动

官网链接:下载 NVIDIA 官方驱动 | NVIDIA下载 NVIDIA 官方驱动 | NVIDIA下载最新官方 NVIDIA 驱动,增强 PC 游戏体验并更快地运行应用。https://www.nvidia.cn/drivers/lookup/

根据自己的显卡型号,选择合适的显卡驱动进行下载安装。

527e68c8c6c5411b97b33e16c775ef4e.png

安装时选择第二个“图形驱动程序”比较合适,“NVIDIA显卡驱动”实际上就是“NVIDIA图形驱动程序”,GeForce Experience主要用于显卡的更新。

16c9392bcbe642efa734f9ce3d13f258.png

之后选择自定义安装,并且勾选执行清洁就可以了。

bc09aef2319b4f67ba0d982b9974d5d1.png

二、查看电脑支持CUDA版本(两种方式选其一)

方法一:终端查看

同时点击win+r,输入cmd点击“确定”或回车,进入终端窗口,输入nvidia-smi查看CUDA版本。

f312bfd67c124309a4bd91d05ac03ba6.png

方法二:NVDIA控制面板查看

搜索框输入nvidia,打开nvidia控制面板,点击系统信息,点击组件,即可看到支持CUDA的最高版本(也可以选择低于该版本)

7d70bd56f66844ff916dab57fdb4ed90.png

三、CUDA的安装与配置

1、CUDA官网进行安装

CUDA官网链接进入:CUDA Toolkit 12.6 Update 2 Downloads | NVIDIA Developerhttps://developer.nvidia.com/cuda-downloadshttps://developer.nvidia.com/cuda-downloads

0d8d621de180430487c62b7e17e41671.png

选择电脑支持CUDA版本进行下载,因为我是11.7.101,所以只要是 CUDA Toolkit 11.7.X 都可以进行下载,我在这里选择的是 CUDA Toolkit 11.7.1。

235930cdbd9948a3a4eda9e5c6180c91.png

按自己的电脑系统进行选择下载安装包,双击打开进行安装。

6d92a26b8504413c9946a67750e19793.png

临时路径,默认即可。

9ebc5ab09c16450bb69bb36dd62431b9.png

若出现以下NVIDIA安装程序失败的情况,可尝试下列四种方式进行解决:​

2d54219d20b54442a42524d90d421935.png

解决方式一:卸载安全助手,等待CUDA安装结束后才可再重新安装安全助手。

        出现安装直接失败,且没有退回选项,只有一个关闭选项时,考虑电脑是否安装了安全助手,安全助手会阻碍CUDA的安装,应卸载安全助手,才可顺利安装。

解决方式二:关闭defender smartscreen(win10)

        由于选择的是浏览器安装,处于安全考虑系统会有限制安装的情况,此时,打开菜单-设置-更新和安全-windows安全中心-应用和浏览器控制,关闭所有保护。

b02556c6ae8c4f289a0a5962b9021024.png

解决方式三:通过自定义的方式取消Visual Studio Intergration进行安装。

05892b1032bc45659857ea521c24cff4.png

解决方式四:通过自定义的方式取消除CUDA以外的程序安装。

自定义安装->只选择cuda(其他三个选项取消对勾)

a141af77365d45e9b36780d177df4fb8.png

再进入cuda里面,将CUDA中的Nsight VSE和Visual Studio Integration取消勾选,后选择下一步,即可安装成功。

​ 168e4f669d774aa4a6674eac6020ad96.png

安装成功之后,再进行一次安装,这次只选择cuda里的Visual Studio Integration,打上对勾,安装就行了。

解决方式五:上述仍无法解决,可参考下面的链接进行解决。

1. CUDA安装失败解决方法_userwarning: unable to discover cuda installation -CSDN博客https://blog.csdn.net/zzpong/article/details/80282814

2.在CMD中检测CUDA是否安装成功,输入nvcc -V回车。

nvcc -V

d0fe7fa19f3444ceb6f79044d8a76e00.png

四、cuDNN安装与配置

1.进入到cuDNN官网:cuDNN 9.5.1 Downloads | NVIDIA Developer

https://developer.nvidia.com/cudnn-downloadshttps://developer.nvidia.com/cudnn-downloads

点击Archive of previous Releases,如果上面链接点击后没出现这个界面,就要注册一个账号,然后再登录就到这个界面。

58a7dde9c90c40c5899945019f9b51fe.png

 ​

e55bcbcf609a4c00959ce19d933a71ed.png

202408dede6247ef81f193e02e4038bf.png

2、CUDNN的安装与配置

(1)下载好CUDNN的压缩包后进行解压

3a98b2bc12de4f6a99fe9e90b10ac2c5.png

(2)将CUDNN内文件全部复制到CUDA对应文件夹内

打开...\NVIDIA Computing Toolkit\CUDA\v11.7,将CUDNN对应bin、lib、include三个文件与CUDA对应的bin、lib、include进行合并,如图将CUDNN的文件全部复制粘贴到CUDA\v11.7。

ccf2a7a9f57c43c88b38e759be65fe25.png

(3)编辑环境变量

打开“编辑系统环境变量”,点击“环境变量”,点击“系统变量”中的Path,添加...\v11.7\lib和v11.7\libnvvp,以及v11.7\include的路径,点击“确定”。

6b4cc18a3ed04ed1ac42aa9a5d958457.png

(4)检查CUDNN是否安装成功

win+R输入cmd逐步打开C:\...\CUDA\v11.7\extras\demo_suite,查看是否含有文件:bandwidthTest.exe以及deviceQuery.exe,若存在则在该文件中打开运行这两个.exe文件。

运行bandwidthTest.exe结果如下:

b267b67ca28e4259aca28e7223404c18.png

运行deviceQuery.exe结果如下:

​若都能成功运行通过就表示CUDNN安装成功了。

61cac89f81e645368bdc51d2e28049eb.png

五、Anaconda安装

1、打开下载Anaconda的网址进行下载(两种方式选一种即可)

方式一:前往Anaconda官网

Download Now | Anacondahttps://www.anaconda.com/download/success

方式二:使用清华源下载:

Index of /anaconda/索引 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

Index of /anaconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source MirrorIndex of /anaconda/ | 清华大学开源软件镜像站,致力于为国内和校内用户提供高质量的开源软件镜像、Linux 镜像源服务,帮助用户更方便地获取开源软件。本镜像站由清华大学 TUNA 协会负责运行维护。https://mirror.tuna.tsinghua.edu.cn/anaconda/

62601325b57d4a8795b48916f90843eb.png

2、一直点击Next默认安装,注意安装路径不能有中文和空格,直到Finish安装完成。

eec624f9aee34fdb9c66fc7b62a7f19b.png

3、配置清华源

(1)进入base环境:

在windows系统的开始菜单中找到Anaconda Powershell Prompt进入,如下图所示:

0beaa7978b734d6c8c560c680afda24b.png

313f05eed83f409cbfb547f8931eeb7e.png

(2)(base环境下)添加镜像,依次输入下面几条命令:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

如下图所示:

25914424ab7a403198c3601242971a78.png

9a5f8d49d9f845c7bd220c8b36dc92eb.png

c3433e3266d347a6b81af5bf913b0027.png

(3)(base环境下)设置搜索时显示通道地址

conda config --set show_channel_urls yes

4、配置环境变量

(1)系统--->高级系统设置--->环境变量

5e7bc7981f2a4745b1325d335dd5ce32.png

(2)点击系统变量中的path,再点击新建,确保包含以下路径:

        D:\Anaconda\Library\bin

        D:\Anaconda\Scripts

        D: \Anaconda\Library\bin

        D: \\Anaconda\\Anaconda

bec43faff33d4856867a012a7ec01829.png

5、验证Annconda是否安装成功

(1)查看python版本

        (base环境下)输入python --version.如果系统给出python版本,即安装成功。

python --version

23a343d08eaa4eabbabe326adbe49113.png

(2)查看Anaconda中python的环境

        (base环境下)查看当前python的环境是否存在。

conda env list

ee507f07c2b64c098211301b6f179461.png

六、pytorch安装

1、(base环境下)创建名字为pytorch,python版本为3.8的虚拟环境

conda create -n pytorch python=3.8

07e8a5a15ca2465c88883506a6aa8a65.png

查看现有的环境:

conda env list

conda info -e

再激活pytorch的环境

conda activate pytorch

 ​94b4165d9c8b4657912954c12da00ba1.png

2、登录PyTorch官网地址:Previous PyTorch Versions | PyTorch

Previous PyTorch Versions | PyTorchInstalling previous versions of PyTorchhttps://pytorch.org/get-started/previous-versions/

        选择对应的版本,如果当前界面没有需要安装的版本,点击左下角PyTorch之前版本,如图:找到对应版本的命令,这里选择cuda=11.7(根据自己cuda情况),复制安装代码。

e50e8346917e402b8b9a4fcb2519b99a.png

  例如:复制conda方式下载安装对应的PyTorch版本(pytorch环境下),安装命令如下:

conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

9b2d3acc20554bd8812cf5c715e93d06.png

如果需要加速,可先执行如下命令设置清华镜像后,再执行上面的安装命令:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

3、验证pytorch是否安装成功

验证命令如下,显示版本号即表示安装成功:

python import torch

# 查看torch版本
print(torch.__version__)

5b86fb9eb2cd4232b46e64550cc1541b.png

七、自行下载需要的各种库

1、(在pytorch环境下)输入安装所需的各种库:

# 安装matplotlib 
pip install matplotlib==3.7.3 -i https://pypi.doubanio.com/simple/

# 安装sklearn 
pip install scikit-learn==0.24.2 -i https://pypi.doubanio.com/simple/
 
# 安装pytz 
pip install pytz -i https://mirrors.aliyun.com/pypi/simple/
 
# 安装pandas 
pip install pandas==1.1.5 -i https://pypi.doubanio.com/simple/
 
# 安装opencv 
pip install opencv_python==4.4.0.40 -i https://pypi.doubanio.com/simple/
 
# 安装imageio 
pip install imageio==2.32.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
 
#安装ultralytics 
pip install ultralytics -i https://pypi.org/simple/

2、验证是否下载成功

import numpy as np 
import pandas as pd 
import sklearn 
from sklearn.linear_model import LogisticRegression 
from sklearn import metrics 
import cv2 
import matplotlib 
import ultralytics

#最后输入exit()退出

24cc040978464d648aca617dc04e170d.png

<think>好的,我现在需要帮用户解决CUDA安装失败的问题。首先,用户提到之前安装CUDA,但重装系统后一直安装失败,可能和VS的组件冲突有关。另外,用户提供的引用里提到安装早期版本(比如12.0)解决了问题,还有检查nvcc -V是否成功。 首先,我得分析常见的CUDA安装失败原因。根据经验,可能的原因包括:旧版本残留、系统组件不兼容(比如Visual Studio版本)、驱动问题、系统环境不满足要求等。用户提到VS冲突,这可能是指之前安装的VS组件没有完卸载,导致新CUDA安装时检测到残留文件,从而出错。 接下来,我需要整理解决方案。第一步应该是彻底清理旧版本的CUDA和显卡驱动。用户可能之前安装CUDA没有卸载干净,残留文件导致冲突。可以使用DDU工具在安模式下彻底卸载NVIDIA驱动,然后手动删除CUDA相关的文件和注册表项,但要注意提醒用户谨慎操作注册表。 第二步是检查系统兼容性。确保Windows版本符合CUDA的要求,比如某些CUDA版本可能需要特定的Windows 10版本。同时,用户可能需要安装对应的Visual Studio版本,例如CUDA 11.x需要VS2019,而CUDA 12.x需要VS2022。用户之前可能安装了不匹配的VS版本,导致冲突。建议用户查看CUDA官方文档,确认所需VS版本,并正确安装必要的组件,比如C++桌面开发包。 第三步是安装合适的CUDA版本。根据引用中的例子,用户安装12.0版本解决了问题。可能用户当前尝试安装的是较新版本,而系统环境更适合旧版本。建议用户访问NVIDIA官网下载旧版本,比如12.0,并选择自定义安装,仅安装必要的组件,避免冲突。同时,在安装过程中关闭杀毒软件和防火墙,防止安装被中断。 第四步是验证安装是否成功。安装完成后,在命令行输入nvcc -V查看版本信息,以及运行deviceQuery和bandwidthTest样例,确认CUDA是否正确识别显卡。如果这些测试失败,可能需要重新安装驱动或检查硬件兼容性。 另外,用户可能遇到的问题还包括安装过程中的错误代码,比如NSIGHT相关错误,这通常可以通过不安装这些组件来解决。还有可能是Windows更新导致的问题,建议用户暂时禁用自动更新,或在安装前确保系统已更新到最新状态。 最后,根据用户提供的引用,安装早期版本是一个有效的解决方案,因此需要强调这一点,并建议用户优先尝试安装兼容的旧版本,如CUDA 12.0。同时,提醒用户注意安装顺序,先安装VS再安装CUDA,确保依赖项正确配置。 总结解决方案步骤:清理旧驱动和CUDA、检查系统兼容性、安装正确版本的VS组件、下载合适CUDA版本并自定义安装、验证安装结果。同时,针对可能的错误点,如残留文件、VS版本冲突,给出具体操作建议,确保用户能逐步解决问题。</think>### CUDA安装失败解决方案及错误原因分析 #### 一、常见错误原因 1. **残留旧版本冲突** 重装系统后未彻底清理旧版CUDA或显卡驱动残留文件,导致注册表或系统路径冲突[^1]。 2. **Visual Studio组件缺失/版本不匹配** CUDA依赖特定版本的Visual Studio组件(如CUDA 11.x需VS2019,CUDA 12.x需VS2022),缺少相关组件会导致安装中断。 3. **系统环境不满足要求** - Windows系统版本过低(如CUDA 12需Windows 10 20H2以上) - 显卡驱动未更新至CUDA要求的版本(如CUDA 12.1需NVIDIA驱动≥535.86.01) 4. **安装包组件冲突** 安装时勾选了与当前系统不兼容的组件(如NSIGHT_VFX等)。 --- #### 二、分步解决方案 ##### 步骤1:彻底清理旧版本 1. 使用**Display Driver Uninstaller (DDU)** 在安模式下卸载NVIDIA驱动和CUDA残留 ```powershell # 下载地址:https://www.guru3d.com/files-details/display-driver-uninstaller-download.html ``` 2. 手动删除残留文件: - 删除 `C:\Program Files\NVIDIA Corporation` 和 `C:\Program Files\NVIDIA GPU Computing Toolkit` - 清理注册表:`Win+R` → 输入 `regedit` → 删除 `HKEY_LOCAL_MACHINE\SOFTWARE\NVIDIA Corporation`(操作前备份注册表) ##### 步骤2:检查系统兼容性 1. 确认Windows版本: - `Win+R` → 输入 `winver` → 查看系统版本 - 若版本过低,需升级系统(如CUDA 12要求Windows 10 20H2+) 2. 安装匹配的Visual Studio组件: - 下载VS2022社区版 → 安装时勾选 **“使用C++的桌面开发”** 和 **“Windows 11 SDK”** [^1] ##### 步骤3:安装CUDA 1. 下载早期版本(如CUDA 12.0): ```powershell # NVIDIA官方存档:https://developer.nvidia.com/cuda-toolkit-archive ``` 2. 自定义安装: - 仅勾选 **CUDA** → **Development** 和 **Runtime** 组件 - 取消勾选 **NSIGHT_VFX**、**Visual Studio Integration**(若已安装独立VS) 3. 安装完成后验证: ```powershell nvcc -V # 应显示CUDA版本 cd "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\extras\demo_suite" .\bandwidthTest.exe # 返回Result = PASS表示成功[^2] ``` --- #### 三、典型错误处理 | 错误代码 | 解决方案 | |----------------|------------------------------| | **NSIGHT冲突** | 安装时不勾选NSIGHT相关组件 | | **驱动不兼容** | 升级显卡驱动至CUDA要求的最低版本 | ---
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扶云云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值