目录
1、右键点击“此电脑”–“管理”–“设备管理器”–“显示适配器”–查看显卡型号
解决方式一:卸载安全助手,等待CUDA安装结束后才可再重新安装安全助手。
解决方式二:关闭defender smartscreen(win10)
解决方式三:通过自定义的方式取消Visual Studio Intergration进行安装。
2.在CMD中检测CUDA是否安装成功,输入nvcc -V回车。
1.进入到cuDNN官网:cuDNN 9.5.1 Downloads | NVIDIA Developer
1、打开下载Anaconda的网址进行下载(两种方式选一种即可)
2、一直点击Next默认安装,注意安装路径不能有中文和空格,直到Finish安装完成。
(2)点击系统变量中的path,再点击新建,确保包含以下路径:
1、(base环境下)创建名字为pytorch,python版本为3.8的虚拟环境
2、登录PyTorch官网地址:Previous PyTorch Versions | PyTorch
一、安装显卡驱动(已安装则跳过该步骤)
1、右键点击“此电脑”–“管理”–“设备管理器”–“显示适配器”–查看显卡型号
2、官网下载显卡驱动:根据显卡型号选择对应的驱动
官网链接:下载 NVIDIA 官方驱动 | NVIDIA下载 NVIDIA 官方驱动 | NVIDIA下载最新官方 NVIDIA 驱动,增强 PC 游戏体验并更快地运行应用。https://www.nvidia.cn/drivers/lookup/
根据自己的显卡型号,选择合适的显卡驱动进行下载安装。
安装时选择第二个“图形驱动程序”比较合适,“NVIDIA显卡驱动”实际上就是“NVIDIA图形驱动程序”,GeForce Experience主要用于显卡的更新。
之后选择自定义安装,并且勾选执行清洁就可以了。
二、查看电脑支持CUDA版本(两种方式选其一)
方法一:终端查看
同时点击win+r,输入cmd点击“确定”或回车,进入终端窗口,输入nvidia-smi查看CUDA版本。
方法二:NVDIA控制面板查看
搜索框输入nvidia,打开nvidia控制面板,点击系统信息,点击组件,即可看到支持CUDA的最高版本(也可以选择低于该版本)
三、CUDA的安装与配置
1、CUDA官网进行安装
CUDA官网链接进入:CUDA Toolkit 12.6 Update 2 Downloads | NVIDIA Developerhttps://developer.nvidia.com/cuda-downloadshttps://developer.nvidia.com/cuda-downloads
选择电脑支持CUDA版本进行下载,因为我是11.7.101,所以只要是 CUDA Toolkit 11.7.X 都可以进行下载,我在这里选择的是 CUDA Toolkit 11.7.1。
按自己的电脑系统进行选择下载安装包,双击打开进行安装。
临时路径,默认即可。
若出现以下NVIDIA安装程序失败的情况,可尝试下列四种方式进行解决:
解决方式一:卸载安全助手,等待CUDA安装结束后才可再重新安装安全助手。
出现安装直接失败,且没有退回选项,只有一个关闭选项时,考虑电脑是否安装了安全助手,安全助手会阻碍CUDA的安装,应卸载安全助手,才可顺利安装。
解决方式二:关闭defender smartscreen(win10)
由于选择的是浏览器安装,处于安全考虑系统会有限制安装的情况,此时,打开菜单-设置-更新和安全-windows安全中心-应用和浏览器控制,关闭所有保护。
解决方式三:通过自定义的方式取消Visual Studio Intergration进行安装。
解决方式四:通过自定义的方式取消除CUDA以外的程序安装。
自定义安装->只选择cuda(其他三个选项取消对勾)
再进入cuda里面,将CUDA中的Nsight VSE和Visual Studio Integration取消勾选,后选择下一步,即可安装成功。
安装成功之后,再进行一次安装,这次只选择cuda里的Visual Studio Integration,打上对勾,安装就行了。
解决方式五:上述仍无法解决,可参考下面的链接进行解决。
2.在CMD中检测CUDA是否安装成功,输入nvcc -V回车。
nvcc -V
四、cuDNN安装与配置
1.进入到cuDNN官网:cuDNN 9.5.1 Downloads | NVIDIA Developer
https://developer.nvidia.com/cudnn-downloadshttps://developer.nvidia.com/cudnn-downloads
点击Archive of previous Releases,如果上面链接点击后没出现这个界面,就要注册一个账号,然后再登录就到这个界面。
2、CUDNN的安装与配置
(1)下载好CUDNN的压缩包后进行解压
(2)将CUDNN内文件全部复制到CUDA对应文件夹内
打开...\NVIDIA Computing Toolkit\CUDA\v11.7,将CUDNN对应bin、lib、include三个文件与CUDA对应的bin、lib、include进行合并,如图将CUDNN的文件全部复制粘贴到CUDA\v11.7。
(3)编辑环境变量
打开“编辑系统环境变量”,点击“环境变量”,点击“系统变量”中的Path,添加...\v11.7\lib和v11.7\libnvvp,以及v11.7\include的路径,点击“确定”。
(4)检查CUDNN是否安装成功
win+R输入cmd逐步打开C:\...\CUDA\v11.7\extras\demo_suite,查看是否含有文件:bandwidthTest.exe以及deviceQuery.exe,若存在则在该文件中打开运行这两个.exe文件。
运行bandwidthTest.exe结果如下:
运行deviceQuery.exe结果如下:
若都能成功运行通过就表示CUDNN安装成功了。
五、Anaconda安装
1、打开下载Anaconda的网址进行下载(两种方式选一种即可)
方式一:前往Anaconda官网
Download Now | Anacondahttps://www.anaconda.com/download/success
方式二:使用清华源下载:
Index of /anaconda/索引 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
2、一直点击Next默认安装,注意安装路径不能有中文和空格,直到Finish安装完成。
3、配置清华源
(1)进入base环境:
在windows系统的开始菜单中找到Anaconda Powershell Prompt进入,如下图所示:
(2)(base环境下)添加镜像,依次输入下面几条命令:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
如下图所示:
(3)(base环境下)设置搜索时显示通道地址
conda config --set show_channel_urls yes
4、配置环境变量
(1)系统--->高级系统设置--->环境变量
(2)点击系统变量中的path,再点击新建,确保包含以下路径:
D:\Anaconda\Library\bin
D:\Anaconda\Scripts
D: \Anaconda\Library\bin
D: \\Anaconda\\Anaconda
5、验证Annconda是否安装成功
(1)查看python版本
(base环境下)输入python --version.如果系统给出python版本,即安装成功。
python --version
(2)查看Anaconda中python的环境
(base环境下)查看当前python的环境是否存在。
conda env list
六、pytorch安装
1、(base环境下)创建名字为pytorch,python版本为3.8的虚拟环境
conda create -n pytorch python=3.8
查看现有的环境:
conda env list
或
conda info -e
再激活pytorch的环境
conda activate pytorch
2、登录PyTorch官网地址:Previous PyTorch Versions | PyTorch
选择对应的版本,如果当前界面没有需要安装的版本,点击左下角PyTorch之前版本,如图:找到对应版本的命令,这里选择cuda=11.7(根据自己cuda情况),复制安装代码。
例如:复制conda方式下载安装对应的PyTorch版本(pytorch环境下),安装命令如下:
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
如果需要加速,可先执行如下命令设置清华镜像后,再执行上面的安装命令:
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
3、验证pytorch是否安装成功
验证命令如下,显示版本号即表示安装成功:
python import torch
# 查看torch版本
print(torch.__version__)
七、自行下载需要的各种库
1、(在pytorch环境下)输入安装所需的各种库:
# 安装matplotlib
pip install matplotlib==3.7.3 -i https://pypi.doubanio.com/simple/
# 安装sklearn
pip install scikit-learn==0.24.2 -i https://pypi.doubanio.com/simple/
# 安装pytz
pip install pytz -i https://mirrors.aliyun.com/pypi/simple/
# 安装pandas
pip install pandas==1.1.5 -i https://pypi.doubanio.com/simple/
# 安装opencv
pip install opencv_python==4.4.0.40 -i https://pypi.doubanio.com/simple/
# 安装imageio
pip install imageio==2.32.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
#安装ultralytics
pip install ultralytics -i https://pypi.org/simple/
2、验证是否下载成功
import numpy as np
import pandas as pd
import sklearn
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
import cv2
import matplotlib
import ultralytics
#最后输入exit()退出