329. 矩阵中的最长递增路径

本文详细介绍了LeetCode第329题的解决方案,主要使用深度优先搜索(DFS)配合记忆化搜索来寻找矩阵中的最长递增路径。通过遍历矩阵并判断相邻元素是否满足递增条件,同时利用全局变量记录最大值,降低了时间复杂度。代码中包含了DFS的实现和有效性判断,以及问题总结,强调了熟悉DFS模板和优化技巧的重要性。
摘要由CSDN通过智能技术生成

题意分析

329. 矩阵中的最长递增路径 - 力扣(LeetCode)

        这题就是一个就是求最长的递增路径,所以就是一个深搜的问题,不过要加上记忆化搜索来降低时间复杂度,所以这题不需要一个数组来额外记录是否经历过。总的来说还是比较简单的。

算法思路

深度优先搜索的实现

  1. 写一个判断下标是否符合条件的函数。
  2. 遍历每个坐标的四周,符合条件的就继续深搜。

深搜过程中,如果已经搜索过就直接返回之前搜索过的结果。

如果没有搜索过,就继续递归。

     3.最后用一个全局变量记录所有出发的最大值即可。

代码实现

int dirs[]={-1,0,1,0,-1};
class Solution {
public:
    int ans=0;
    vector<vector<int>> pathnum;
    int longestIncreasingPath(vector<vector<int>>& matrix) {
        int m=matrix.size(),n=matrix[0].size();
        pathnum.resize(m,vector<int>(n,-1));
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                int t=dfs(i,j,matrix);
                ans=max(ans,t);
            }
        }
        return ans;
    }
    bool isvalid(int i,int j,int m,int n){
        if(i<0||i>=m||j<0||j>=n) return false;
        return true;
    }
    int dfs(int i,int j,vector<vector<int>>&matrix){
        int m=matrix.size(),n=matrix[0].size();
        if(!isvalid(i,j,m,n)) return 0;
        if(pathnum[i][j]!=-1) return pathnum[i][j];
        int sum=0;
        for(int k=0;k<4;k++){
            int x=i+dirs[k],y=j+dirs[k+1];
            if(!isvalid(x,y,m,n)) continue;
            if(matrix[i][j]<matrix[x][y]){//满足当前的比较小才去搜索
                int t=dfs(x,y,matrix);
                sum=max(sum,t);
            }
        }
        pathnum[i][j]=sum+1;
        return pathnum[i][j];
    }
};

解题总结

        熟悉深度优先搜索的模板,懂得如何用记忆化搜索进行优化,最后根据题目的限制条件限制进一步的递归,就能得解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值