model.py
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
class GoogLeNet(nn.Module):
def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3) # BasicConv2d类
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32) # Inception类
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
if self.aux_logits:
self.aux1 = InceptionAux(512, num_classes) # InceptionAux类
self.aux2 = InceptionAux(528, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.4)
self.fc = nn.Linear(1024, num_classes)
if init_weights:
self._initialize_weights()
# 正向传播
def forward(self, x):
# N x 3 x 224 x 224
x = self.conv1(x) # N x 64 x 112 x 112
x = self.maxpool1(x) # N x 64 x 56 x 56
x = self.conv2(x) # N x 64 x 56 x 56
x = self.conv3(x) # N x 192 x 56 x 56
x = self.maxpool2(x) # N x 192 x 28 x 28
x = self.inception3a(x) # N x 256 x 28 x 28
x = self.inception3b(x) # N x 480 x 28 x 28
x = self.maxpool3(x) # N x 480 x 14 x 14
x = self.inception4a(x) # N x

该博客介绍了使用GoogLeNet模型训练CIFAR10数据集的过程。模型包含Inception模块,辅助分类器InceptionAux,以及训练和验证阶段。代码实现了训练过程,包括损失跟踪、权重初始化和断点续训,并使用TensorBoard进行可视化。
最低0.47元/天 解锁文章
1103

被折叠的 条评论
为什么被折叠?



