(Pytorch)GoogleNet代码复现CIFAR-10数据集

该博客介绍了使用GoogLeNet模型训练CIFAR10数据集的过程。模型包含Inception模块,辅助分类器InceptionAux,以及训练和验证阶段。代码实现了训练过程,包括损失跟踪、权重初始化和断点续训,并使用TensorBoard进行可视化。

model.py

import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter


class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)  # BasicConv2d类
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)  # Inception类
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)  # InceptionAux类
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._initialize_weights()

    # 正向传播
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)  # N x 64 x 112 x 112
        x = self.maxpool1(x)  # N x 64 x 56 x 56

        x = self.conv2(x)  # N x 64 x 56 x 56
        x = self.conv3(x)  # N x 192 x 56 x 56
        x = self.maxpool2(x)  # N x 192 x 28 x 28

        x = self.inception3a(x)  # N x 256 x 28 x 28
        x = self.inception3b(x)  # N x 480 x 28 x 28
        x = self.maxpool3(x)  # N x 480 x 14 x 14

        x = self.inception4a(x)  # N x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值