这篇文章好像有点大,所以上边网页点进去是看不到的,进入环境之后就能看了
🥪必要包的下载导入
!pip install fake_useragent
!pip install bs4
!cp /home/aistudio/simhei.ttf /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf/
!cp /home/aistudio/simhei.ttf .fonts/
!rm -rf .cache/matplotlib
🥪股票信息爬取
#coding=utf-8
'''
Created on 2021年02月20日
@author: zhongshan
'''
#http://quote.eastmoney.com/center/gridlist.html
#爬取该页面股票信息
import requests
from fake_useragent import UserAgent
from bs4 import BeautifulSoup
import json
import csv
def getHtml(url):
r = requests.get(url,headers={
'User-Agent': UserAgent().random,
})
r.encoding = r.apparent_encoding
return r.text
#num为爬取多少条记录,可手动设置
num = 20
#该地址为页面实际获取数据的接口地址
stockUrl='http://99.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112408733409809437476_1623137764048&pn=1&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&fid=f3&fs=m:0+t:80&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152&_=1623137764167:formatted'
if __name__ == '__main__':
responseText = getHtml(stockUrl)
jsonText = responseText.split("(")[1].split(")")[0];
resJson = json.loads(jsonText)
datas = resJson["data"]["diff"]
datalist = []
for data in datas:
# if (str().startswith('6') or str(data["f12"]).startswith('3') or str(data["f12"]).startswith('0')):
row = [data["f12"],data["f14"]]
datalist.append(row)
print(datalist)
f =open('stock.csv','w+',encoding='utf-8',newline="")
writer = csv.writer(f)
writer.writerow(('代码', '名称'))
for data in datalist:
writer.writerow((data[0]+"\t",data[1]+"\t"))
f.close()
-
定义了一个函数
getHtml(url)
,用于获取指定URL页面的HTML内容。使用requests.get()
方法发送GET请求,通过fake_useragent生成随机的User-Agent来伪装请求头,避免被网站封禁IP。然后设置编码为页面的apparent_encoding,确保编码正确 -
设置要爬取的记录条数
num
-
定义了变量
stockUrl
,该地址为页面实际获取数据的接口地址。通过该接口地址可以获取股票信息的JSON数据 -
在主程序中,调用
getHtml(stockUrl)
方法获取页面的HTML内容 -
解析HTML内容,提取出JSON数据。首先使用
split()
方法分割字符串,提取出JSON文本部分。然后使用json.loads()
方法将JSON文本解析为Python字典 -
从解析后的JSON数据中提取股票信息,并存储到列表
datalist
中 -
打开文件
stock.csv
,使用CSV模块创建一个写入对象writer
,将股票信息写入CSV文件中 -
遍历
datalist
列表,将每条股票信息写入CSV文件中 -
关闭CSV文件
🥪多线程并发下载股票数据文件并存储为CSV格式
import csv
import urllib.request as r
import threading
#读取之前获取的个股csv丢入到一个列表中
def getStockList():
stockList = []
f = open('stock.csv','r',encoding='utf-8')
f.seek(0)
reader = csv.reader(f)
for item in reader:
stockList.append(item)
f.close()
return stockList
def downloadFile(url,filepath):
# print(filepath)
try:
r.urlretrieve(url,filepath)
except Exception as e:
print(e)
print(filepath,"is downloaded")
pass
#设置信号量,控制线程并发数
sem = threading.Semaphore(1)
def downloadFileSem(url,filepath):
with sem:
downloadFile(url,filepath)
urlStart = 'http://quotes.money.163.com/service/chddata.html?code='
urlEnd = '&end=20210221&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;VOTURNOVER;VATURNOVER'
if __name__ == '__main__':
stockList = getStockList()
stockList.pop(0)
print(stockList)
for s in stockList:
scode = str(s[0].split("\t")[0])
#0:沪市;1:深市
url = urlStart + ("0" if scode.startswith('6') else "1") + scode + urlEnd
print(url)
filepath = (str(s[1].split("\t")[0])+"_"+scode) + ".csv"
threading.Thread(target=downloadFileSem,args=(url,filepath)).start()
-
定义了一个新的函数
getStockList()
,用于从之前获取的个股CSV文件中读取数据,并将其存储到一个列表中。通过csv.reader()
方法逐行读取CSV文件,并将每一行数据存储为一个列表,最后将所有列表存储到stockList
中 -
定义了一个新的函数
downloadFile(url, filepath)
,用于下载文件。通过urllib.request.urlretrieve()
方法下载指定URL的文件,并保存到指定的路径 -
引入了
threading
模块,用于创建线程实现多线程下载 -
定义了一个信号量
sem
,用于控制线程并发数。在多线程环境下,为了避免资源竞争和死锁,可以使用信号量来限制同时执行的线程数量 -
定义了一个新的函数
downloadFileSem(url, filepath)
,在该函数中使用了信号量sem
来限制并发数,然后调用downloadFile()
函数下载文件 -
修改了
urlStart
和urlEnd
变量,用于构造下载文件的URL。根据个股代码的首位数字(0表示沪市,1表示深市),选择对应的交易所代码 -
在主程序中,获取之前获取的个股列表
stockList
,然后依次遍历每个股票信息 -
对于每个股票信息,提取股票代码和名称,并构造对应的下载URL和文件路径
-
创建一个新的线程,通过
threading.Thread()
方法传入目标函数downloadFileSem
和参数,启动线程并进行下载
🥪股票信息分析
import pandas as pd
import matplotlib.pyplot as plt
import csv
# 设置显示中文
plt.rcParams['font.sans-serif'] = ['simhei'] # 指定默认字体
plt.rcParams['axes.unicode_minus']=False # 用来显示负号
plt.rcParams['figure.dpi'] = 100 # 每英寸点数
files = []
# ['日期' '股票代码' '名称' '收盘价' '最高价' '最低价' '开盘价' '前收盘' '涨跌额' '涨跌幅' '成交量' '成交金额']
def read_file(file_name):
data = pd.read_csv(file_name,encoding='gbk')
col_name = data.columns.values
return data, col_name
def get_files_path():
stock_list=getStockList()
paths = []
for stock in stock_list[1:]:
p = stock[1].strip()+"_"+stock[0].strip()+".csv"
print(p)
data,_ = read_file(p)
if len(data)>1:
files.append(p)
print(p)
get_files_path()
print(files)
# 获取股票的涨跌额及涨跌幅度变化曲线
# ['日期' '股票代码' '名称' '收盘价' '最高价' '最低价' '开盘价' '前收盘' '涨跌额' '涨跌幅' '成交量' '成交金额']
def get_diff(file_name):
data, col_name = read_file(file_name)
index = len(data['日期'])-1
sep = index//15
plt.figure(figsize=(15,17))
x = data['日期'].values.tolist()
x.reverse()
# x = x[-index:]
xticks=list(range(0,len(x),sep))
xlabels=[x[i] for i in xticks]
xticks.append(len(x))
# xlabels.append(x[-1])
y1 = [float(c) if c!='None' else 0 for c in data['涨跌额'].values.tolist()]
y2=[float(c) if c!='None' else 0 for c in data['涨跌幅'].values.tolist()]
y1.reverse()
y2.reverse()
# y1 = y1[-index:]
# y2 = y2[-index:]
ax1 = plt.subplot(211)
plt.plot(range(1,len(x)+1),y1,c='r')
plt.title('{}-涨跌额/涨跌幅'.format(file_name.split('_')[0]),fontsize=20)
ax1.set_xticks(xticks)
ax1.set_xticklabels(xlabels, rotation=40)
# plt.xlabel('日期')
plt.ylabel('涨跌额',fontsize=20)
ax2 = plt.subplot(212)
plt.plot(range(1,len(x)+1),y2,c='g')
# plt.title('{}-涨跌幅'.format(file_name.split('_')[0]))
ax2.set_xticks(xticks)
ax2.set_xticklabels(xlabels, rotation=40)
plt.xlabel('日期',fontsize=20)
plt.ylabel('涨跌幅',fontsize=20)
plt.savefig('work/'+file_name.split('.')[0]+'_diff.png')
plt.show()
def get_max_min(file_name):
data, col_name = read_file(file_name)
index = len(data['日期'])-1
sep = index//15
plt.figure(figsize=(15,10))
x = data['日期'].values.tolist()
x.reverse()
x = x[-index:]
xticks=list(range(0,len(x),sep))
xlabels=[x[i] for i in xticks]
xticks.append(len(x))
# xlabels.append(x[-1])
y1 = [float(c) if c!='None' else 0 for c in data['最高价'].values.tolist()]
y2=[float(c) if c!='None' else 0 for c in data['最低价'].values.tolist()]
y1.reverse()
y2.reverse()
y1 = y1[-index:]
y2 = y2[-index:]
ax = plt.subplot(111)
plt.plot(range(1,len(x)+1),y1,c='r',linestyle="-")
plt.plot(range(1,len(x)+1),y2,c='g',linestyle="--")
plt.title('{}-最高价/最低价'.format(file_name.split('_')[0]),fontsize=20)
ax.set_xticks(xticks)
ax.set_xticklabels(xlabels, rotation=40)
plt.xlabel('日期',fontsize=20)
plt.ylabel('价格',fontsize=20)
plt.legend(['最高价','最低价'],fontsize=20)
plt.savefig('work/'+file_name.split('.')[0]+'_minmax.png')
plt.show()
def get_deal(file_name):
data, col_name = read_file(file_name)
index = len(data['日期'])-1
sep = index//15
plt.figure(figsize=(15,10))
x = data['日期'].values.tolist()
x.reverse()
x = x[-index:]
xticks=list(range(0,len(x),sep))
xlabels=[x[i] for i in xticks]
xticks.append(len(x))
# xlabels.append(x[-1])
y1 = [float(c) if c!='None' else 0 for c in data['成交量'].values.tolist()]
y2=[float(c) if c!='None' else 0 for c in data['成交金额'].values.tolist()]
y1.reverse()
y2.reverse()
y1 = y1[-index:]
y2 = y2[-index:]
ax = plt.subplot(111)
plt.plot(range(1,len(x)+1),y1,c='b',linestyle="-")
plt.plot(range(1,len(x)+1),y2,c='r',linestyle="--")
plt.title('{}-成交量/成交金额'.format(file_name.split('_')[0]),fontsize=20)
ax.set_xticks(xticks)
ax.set_xticklabels(xlabels, rotation=40)
plt.xlabel('日期',fontsize=20)
# plt.ylabel('')
plt.legend(['成交量','成交金额'],fontsize=20)
plt.savefig('work/'+file_name.split('.')[0]+'_deal.png')
plt.show()
def get_rel(file_name):
data, col_name = read_file(file_name)
index = len(data['日期'])-1
sep = index//15
plt.figure(figsize=(15,10))
x = data['日期'].values.tolist()
x.reverse()
x = x[-index:]
xticks=list(range(0,len(x),sep))
xlabels=[x[i] for i in xticks]
xticks.append(len(x))
# xlabels.append(x[-1])
y1 = [float(c) if c!='None' else 0 for c in data['成交量'].values.tolist()]
y2=[float(c) if c!='None' else 0 for c in data['涨跌幅'].values.tolist()]
y1.reverse()
y2.reverse()
y1 = y1[-index:]
y2 = y2[-index:]
y2 = [0] + y2[:-1]
ax = plt.subplot(111)
plt.scatter(y2,y1)
plt.title('{}-成交量与前一天涨跌幅的关系'.format(file_name.split('_')[0]),fontsize=20)
# ax.set_xticks(xticks)
# ax.set_xticklabels(xlabels, rotation=40)
plt.xlabel('前一天涨跌幅',fontsize=20)
plt.ylabel('成交量',fontsize=20)
# plt.legend(['成交量','成交金额'],fontsize=20)
plt.savefig('work/'+file_name.split('.')[0]+'_rel.png')
plt.show()
# for file in files:
# get_diff(file)
# for file in files:
# get_max_min(file)
print(len(files))
for file in files:
get_max_min(file)
get_deal(file)
get_diff(file)
get_rel(file)
# read_file('润和软件_300339.csv')
# read_file('N迈拓_301006.csv')
# read_file('N崧盛_301002.csv')
-
read_file(file_name)
函数:读取CSV文件并返回数据以及列名 -
get_files_path()
函数:获取文件路径,并将文件名添加到列表files
中。首先调用了getStockList()
函数获取个股列表,然后遍历每个个股,在文件名中提取股票代码和名称,并根据文件名读取数据。如果数据长度大于1,则将文件名添加到files
列表中 -
get_diff(file_name)
函数:根据给定的文件名绘制股票的涨跌额和涨跌幅变化曲线。首先读取指定文件的数据,然后提取日期、涨跌额和涨跌幅数据。根据数据量确定x轴刻度的间隔,然后绘制两个子图,分别表示涨跌额和涨跌幅。在子图中,横轴表示日期,纵轴分别表示涨跌额和涨跌幅。最后保存图片并展示 -
get_max_min
函数绘制了最高价和最低价的折线图 -
get_deal
函数绘制了成交量和成交金额的折线图 -
get_rel
函数绘制了成交量与前一天涨跌幅的散点图
文件里面画了很多图,但是都太大了,截不全,感兴趣的朋友可以进链接里看一下。
🥗有什么问题我们随时评论区见~
⭐点赞收藏不迷路~