CINTA作业2

作业2

7.手动计算以下模m下a的乘法逆元。(a)m=11,a=5;(b)m=121,a=13;©m=1021,a=131。
利用扩展欧几里得算法求乘法逆元
(a) m=11,a=5
解:
[ 1 0 11 0 1 5 ] (1) \left[ \begin{matrix} 1 & 0 & 11 \\ 0 & 1 & 5 \\ \end{matrix} \right] \tag{1} [1001115](1)
用第一行减两倍第二行,得到一个新的行,接着把第一行替换为第二行,新的一行替换原来的第二行,得到一个新的矩阵
[ 0 1 5 1 − 2 1 ] (2) \left[ \begin{matrix} 0 & 1 & 5 \\ 1 & -2 & 1 \\ \end{matrix} \right] \tag{2} [011251](2)
得到r=-2,s=3和d=1。
m+r=9,所以求得乘法逆元为9

同样的方式,计算以下
(b)m=121,a=13
[ 1 0 121 0 1 13 ] (1) \left[ \begin{matrix} 1 & 0 & 121 \\ 0 & 1 & 13 \\ \end{matrix} \right] \tag{1} [100112113](1)
[ 0 1 13 1 − 9 4 ] (2) \left[ \begin{matrix} 0 & 1 & 13 \\ 1 & -9 & 4 \\ \end{matrix} \right] \tag{2} [0119134](2)
[ 1 − 9 4 0 28 1 ] (3) \left[ \begin{matrix} 1 & -9 & 4 \\ 0 & 28 & 1 \\ \end{matrix} \right] \tag{3} [1092841](3)
解得乘法逆元为28
©m=1021,a=131
[ 1 0 1021 0 1 131 ] (1) \left[ \begin{matrix} 1 & 0 & 1021 \\ 0 & 1 & 131 \\ \end{matrix} \right] \tag{1} [10011021131](1)
[ 0 1 131 1 − 7 104 ] (2) \left[ \begin{matrix} 0 & 1 & 131 \\ 1 & -7 & 104 \\ \end{matrix} \right] \tag{2} [0117131104](2)
[ 1 − 7 104 − 1 8 27 ] (3) \left[ \begin{matrix} 1 & -7 & 104 \\ -1 & 8 & 27 \\ \end{matrix} \right] \tag{3} [117810427](3)
[ − 1 8 27 4 − 31 23 ] (4) \left[ \begin{matrix} -1 & 8 & 27 \\ 4 & -31 & 23 \\ \end{matrix} \right] \tag{4} [148312723](4)
[ 4 − 31 23 − 5 39 4 ] (5) \left[ \begin{matrix} 4& -31& 23 \\ -5 & 39 & 4 \\ \end{matrix} \right] \tag{5} [453139234](5)
[ − 5 39 4 29 − 226 3 ] (6) \left[ \begin{matrix} -5& 39 & 4 \\ 29 & -226 & 3 \\ \end{matrix} \right] \tag{6} [5293922643](6)
[ 29 − 226 3 − 34 265 1 ] (7) \left[ \begin{matrix} 29 & -226 & 3 \\ -34 & 265 & 1 \\ \end{matrix} \right] \tag{7} [293422626531](7)
所以乘法逆元为265
8.编写C语言程序完成模指数运算,即给定整数x,y,和m为输入,计算并返回值xy mod m。

#include <iostream>
using namespace std;
int modezs(int x, int y, int n)
{
    if (y == 0) return 1;
    int z = modezs(x, y / 2, n);
    if (y % 2 == 0) return z * z % n;
    else return x * z * z % n;
}
int main()
{
    int x, y, n;
    int z;
    cin >> x >> y >> n;
    z = modezs(x, y, n);
    cout << z << endl;
    return 0;
}

运行结果测试:
在这里插入图片描述
在这里插入图片描述

由题意,只需构造一个 [ 1 1 1 0 ]   \left[ \begin{matrix} 1 & 1 \\ 1 & 0 \\ \end{matrix} \right] \ [1110] 矩阵,然后求其的n次幂就可以快速求解F(n)

#include<iostream>
using namespace std;
class Matrix {
public:
    int m[2][2];
    Matrix() {
        m[0][0] = m[0][1] = m[1][0] = 1;
        m[1][1] = 0;
    }
    Matrix(int a,int b,int c,int d) {
        m[0][0] = a; m[0][1] = b; m[1][0] = c;
        m[1][1] = d;
    }
};
Matrix multiply(Matrix a, Matrix b) {//矩阵乘法
    Matrix c;
    for (int i = 0; i < 2; i++) {
        for (int j = 0; j < 2; j++) {
            c.m[i][j] = a.m[i][0] * b.m[0][j] + a.m[i][1] * b.m[1][j];
        }
    }
    return c;
}
Matrix pow(Matrix a, int n) {//快速幂
    Matrix ret(1,0,0,1);//构造单位矩阵
    while (n > 0) {
        if (n & 1) {
            ret = multiply(ret, a);
        }
        n >>= 1;
        a = multiply(a, a);
    }
    return ret;
}
int fib(int n) {
    if (n < 2) {
        return n;
    }
    Matrix q;
    Matrix res = pow(q, n - 1);
    return res.m[0][0];
}
int main() 
{
        int n;
        cin >> n;
        cout << "F"<<"("<<n<<")=" << fib(n);
}

结果测试:

10.给定互素的正整数c和m,请证明在mod m的意义上存在唯一确定的整数值c-1,它使得cc^-1≡(mod m)。
证明:
∵两个正整数c和m
∴由Bézout 定理,存在整数 r 和 s 使得:
gcd(c, m) = cr + ms=1
即cr+ms≡1(mod m)
即cr≡1(mod m))
∴存在c-1=r使得cc^-1≡1(mod m)。
假设c mod m的逆元不是唯一的,设a、b分别c mod m的逆元,则ac≡bc≡1(mod m)
由定义则有m|c(a-b)
∵gcd(c,m)=1
∴m|(a-b)
即a≡c(mod m)
∴a和c是模m唯一的,假设不成立。
综上,在mod m的意义上存在唯一确定的整数值c-1,它使得cc^-1≡(mod m)

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值