CINTA第四次作业

第六章
7.设 G \mathbb{G} G是群,对任意 n ∈ N n\in \N nN, i ∈ [ 0 , n ] i \in [0, n] i[0,n] g i ∈ G g_i \in \mathbb{G} giG。证明 g 0 g 1 ⋯ g n g_0 g_1 \cdots g_n g0g1gn的逆元是 g n − 1 ⋯ g 1 − 1 g 0 − 1 g_n^{-1} \cdots g_1^{-1} g_0^{-1} gn1g11g01
证明:
g 0 g 1 ⋯ g n g_0 g_1 \cdots g_n g0g1gn· g n − 1 ⋯ g 1 − 1 g 0 − 1 g_n^{-1} \cdots g_1^{-1} g_0^{-1} gn1g11g01=e
g n − 1 ⋯ g 1 − 1 g 0 − 1 g_n^{-1} \cdots g_1^{-1} g_0^{-1} gn1g11g01· g 0 g 1 ⋯ g n g_0 g_1 \cdots g_n g0g1gn=e
∴由逆元的定义, g 0 g 1 ⋯ g n g_0 g_1 \cdots g_n g0g1gn的逆元是 g n − 1 ⋯ g 1 − 1 g 0 − 1 g_n^{-1} \cdots g_1^{-1} g_0^{-1} gn1g11g01
8.证明:任意群 G \mathbb{G} G的两个子群的交集也是群 G \mathbb{G} G的子群。

证明:假设H1和H2是G的两个子群,e是G的单位元,那么H1和H2必定包含e即e∈H1∩H2,且H1、H2都不为空。∀a,b∈H1∩H2,则a,b∈H1,a,b∈H2,则ab∈H1∩H2。a∈H1∩H2,则a∈H1且a∈H2,所以a-1∈H1且a-1∈H2,则a-1∈H1∩H2。∴任意群 G \mathbb{G} G的两个子群的交集也是群 G \mathbb{G} G的子群。
10. G \mathbb{G} G是阿贝尔群, H \mathbb{H} H K \mathbb{K} K G \mathbb{G} G的子群。
请证明 H K = { h k : h ∈ H , k ∈ K } \mathbb{H} \mathbb{K} = \{hk: h \in \mathbb{H}, k \in \mathbb{K}\} HK={hk:hH,kK}是群 G \mathbb{G} G的子群。
如果 G \mathbb{G} G不是阿贝尔群,结论是否依然成立?

证明:
H K \mathbb{H} \mathbb{K} HK中取任意两个元素h1k1和h2k2,则h1k1 H K \mathbb{H} \mathbb{K} HK,h2k2 H K \mathbb{H} \mathbb{K} HK,而h1k1h2k2=h1h2k1k2,h1h2 H \mathbb{H} H,k1k2 K \mathbb{K} K,所以h1h2k1k2 H K \mathbb{H} \mathbb{K} HK,即h1k1h2k2 H K \mathbb{H} \mathbb{K} HK
h1k1 H K \mathbb{H} \mathbb{K} HK,(h1k1)-1=h1-1k1-1,其中h1-1 H \mathbb{H} H,k1-1 K \mathbb{K} K,则有(h1k1)-1 H K \mathbb{H} \mathbb{K} HK
所以 H K = { h k : h ∈ H , k ∈ K } \mathbb{H} \mathbb{K} = \{hk: h \in \mathbb{H}, k \in \mathbb{K}\} HK={hk:hH,kK}是群 G \mathbb{G} G的子群。
G \mathbb{G} G不是阿贝尔群,结论不成立,因为非阿贝尔群不满足交换律

11.设 G \mathbb{G} G是阿贝尔群, m m m是任意整数,记 G m = { g m : g ∈ G } \mathbb{G}^m = \{ g^m: g\in \mathbb{G}\} Gm={gm:gG}。请证明 G m \mathbb{G}^m Gm G \mathbb{G} G的一个子群。
证明:设ab∈ G \mathbb{G} G,则ambm=(ab)m
所以ambm=(ab)m G m \mathbb{G}^m Gm
设(am)-1是am的逆元,而(am)-1=(a-1)m G m \mathbb{G}^m Gm
所以 G m \mathbb{G}^m Gm G \mathbb{G} G的一个子群。
第七章
6.证明:如果群 G \mathbb{G} G没有非平凡子群,则群 G \mathbb{G} G是循环群
证明:
因为群 G \mathbb{G} G中无非平凡子群,即G只有{e},和 G \mathbb{G} G两个子群
显然,群 G \mathbb{G} G中任意一个非单位元素都可以生成 G \mathbb{G} G,因此 G \mathbb{G} G为循环群。
7.循环群 G \mathbb{G} G中任意元素的阶都整除群 G \mathbb{G} G的阶。
证明:
由定理7.5得,若群 G \mathbb{G} G = {g}是阶为 n 的循环群,如果 h = gk,则 h 的阶为 n/d,其中 d = gcd(k, n),易知.循环群 G \mathbb{G} G中任意元素的阶都整除群 G \mathbb{G} G的阶
8.编程完成以下工作:给定一个素数 p p p,找出 Z p ∗ \Z_p^* Zp的最小生成元。对于素数 1 < p < 10000 1< p < 10000 1<p<10000,哪一个素数 p p p使得 Z p ∗ \Z_p^* Zp的最小生成元最大?

#include<iostream>
#include <vector>
using namespace std;
bool judge(int x)
{
    for (int i = 2; i <= sqrt(x); i++)
        if (x % i == 0)
            return 0;
        else return 1;
}//判断是否为素数

void getPrime(int maxNum, vector<int>& PrimeList) {
    if (maxNum >= 2) PrimeList.push_back(2);
    for (int i = 3; i <= maxNum; i = i + 2) {
        if (judge(i)) PrimeList.push_back(i);
    }
}//获取一定范围内的素数
bool Scy(int g, int p)//判断元素g是否为生成元
{
    int G = g * g;
    for (int i = 2; i <= p; i++)
    {
        if (G%p == g)//循环回到g时,
        {
            if (i == p)//判断g的指数是否为p
                return 1;//如果指数为p,那g是生成元
            else
                return 0;//如果不是p则g不是生成元
        }
        G = (G%p) * g;//!!中途模运算:每次操作完就对G取模,防止了可怕数据量的出险!!改进前为:G=G*g
    }
    return 0; //111
}
int getMingener(int Prime) {

    if (!judge(Prime)) return 0;
    if (Prime == 2) return 1;
   
    for (int i = 1; i <= Prime - 1; i++) {
        if(Scy(i, Prime))
        {
            return i;
        }

    }
    return 0;
}//获取z*p的生成元
int main()
{
    vector<int> primes;
    getPrime(10000, primes);
    int p;
    cout << "请输入一个素数p:"<<endl;
    cin >> p;
    if (judge(p))
    {
        cout << "Z*" << p << "的最小生成元是:" << getMingener(p);
    }
    int a = 0,b=0;
    int temp[1500];
    for (vector<int>::iterator it = primes.begin(); it != primes.end(); it++) {
        
        temp[b]=*it;//将最小生成元存储起来
        b++;
    }
    int max = 0;
    for (int i=0; i<b; i++) {

        if (max < temp[i])
        {
            max = temp[i];

        }
    }
    for (int i = 0; i < b; i++) {
        if (max = temp[i])
        {
            break;
        }
        a++;
    }
    cout << "1~10000内使得最小生成元最大的素数是" << primes[a];
    return 0;
}


第八章
3.如果 G \mathbb{G} G是群, H \mathbb{H} H是群 G \mathbb{G} G的子群,且 [ G : H ] = 2 \lbrack \mathbb{G} : \mathbb{H}\rbrack =2 [G:H]=2,请证明对任意的 g ∈ G g\in \mathbb{G} gG g H = H g g \mathbb{H} = \mathbb{H}g gH=Hg
证明:
[ G : H ] = 2 \lbrack \mathbb{G} : \mathbb{H}\rbrack =2 [G:H]=2
G \mathbb{G} G H \mathbb{H} H划分成了两个部分,其中一个为 H \mathbb{H} H,设另一个为 K \mathbb{K} K
若g∈ H \mathbb{H} H,则g-1 G \mathbb{G} G,对于g H \mathbb{H} Hg-1= H \mathbb{H} H
∴g H \mathbb{H} Hg-1g= g H g\mathbb{H} gH= H g \mathbb{H}g Hg
当g∉ H \mathbb{H} H时,由陪集的属性, g H g\mathbb{H} gH H \mathbb{H} H H g \mathbb{H}g Hg H \mathbb{H} H
g H g\mathbb{H} gH H g \mathbb{H}g Hg都属于 K \mathbb{K} K
g H = H g g \mathbb{H} = \mathbb{H}g gH=Hg
4.设 G \mathbb{G} G是阶为 p q pq pq的群,其中 p p p q q q是素数。请证明 G \mathbb{G} G的任意真子群是循环群。
证明:
因为p、q均是素数,能整除pq的只有1、p、q和pq,由拉格朗日定理,其真子群的阶有1、p、q,根据拉格朗日定理的推论,素数阶数的有限群一定是循环群
5.如果群 H \mathbb{H} H是有限群 G \mathbb{G} G的真子群,即存在 g ∈ G g\in \mathbb{G} gG但是 g ∉ H g \not \in \mathbb{H} gH。请证明 ∣ H ∣ ≤ ∣ G ∣   / 2 \vert \mathbb{H} \vert \leq \vert \mathbb{G} \vert \ /2 HG /2
证明:
g ∈ G g\in \mathbb{G} gG但是 g ∉ H g \not \in \mathbb{H} gH,即 H \mathbb{H} H G \mathbb{G} G上的左陪集个数大于等于两个
∴由拉格朗日定理∣ G \mathbb{G} G∣/∣ H \mathbb{H} H∣=[ G \mathbb{G} G: H \mathbb{H} H]≥2。
∣ H ∣ ≤ ∣ G ∣   / 2 \vert \mathbb{H} \vert \leq \vert \mathbb{G} \vert \ /2 HG /2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值