搜索与图论:Kruskal

Kruskal算法求最小生成树:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 100010;
int p[N];//保存并查集
int res;//权重之和
int n, m;
int cnt;//树的边数

struct E{
    int a;//起始点
    int b;//终止点
    int w;//权重
    bool operator < (const E& rhs)//通过边长进行升序
    {
        return this->w < rhs.w;
    }

}edg[N * 2];//因为是无向图,所以边数要乘以2

int find(int a)//并查集找祖宗
{
    if(p[a] != a) p[a] = find(p[a]);
    return p[a];
}

void klskr()
{
    for(int i = 1; i <= m; i++)//依次尝试加入每条边
    {
        int pa = find(edg[i].a);// a 点所在的集合找祖宗
        int pb = find(edg[i].b);// b 点所在的集合找祖宗
        if(pa != pb)//如果 a b 不在一个集合中,即祖宗不是同一个
        {
            res += edg[i].w;//该集合的权重要加上ab之间的权重,不是ab祖宗的权重,因为是把ab的边加入集合
            p[pa] = pb;//a的祖宗为b的祖宗,即b的祖宗多一个儿子
            cnt ++; // 保留的边数量+1,因为生成了一条边
        }
    }
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i = 1; i <= n; i++) p[i] = i;//初始化并查集
    for(int i = 1; i <= m; i++)//读入每条边
    {
        int a, b , c;
        scanf("%d%d%d",&a,&b,&c);
        edg[i] = {a, b, c};
    }
    sort(edg + 1, edg + m + 1);//按边长升序,+1是因为0号位不存元素
    klskr();
    if(cnt < n - 1) 
    {//边数最小也是点的数量-1,如果更小,则说明不连通
        printf("impossible\n");
        return 0;
    }
    printf("%d\n",res);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MegumiKato丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值