简单瞎搞题(简单dp)

文章介绍了一种利用动态规划和bitset优化解决数学问题的方法。题目要求计算在给定区间内每个数的平方和的组合数,原解决方案因为时间复杂度过高导致超时。通过使用bitset优化,将01状态的数组压缩,实现了更高效的转移方程,从而降低了时间复杂度并得到了正确答案。
摘要由CSDN通过智能技术生成

链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
 

题目描述

一共有 n个数,第 i 个数是 xi 

xi 可以取 [li , ri] 中任意的一个值。

设 S=∑xi^​2,求 S 种类数。

输入描述:

第一行一个数 n。 
然后 n 行,每行两个数表示 li,ri。

输出描述:

输出一行一个数表示答案。

示例1

输入

5
1 2
2 3
3 4
4 5
5 6

输出

26

题目分析

题目显然为分组背包,设f【i】【j】=0or1表示前i个数能否表示j;

转移为f【i】【j】=1仅当f【i-1】【j-x*x】=1时(x=【l【i】,r【i】】);

这样会枚举n,区间长度和j的值,即复杂度为1e10,超时...

这样其实比较浪费,f数组是一个只有01两个值的数组,于是可以考虑用bitset来优化它。

这样一行就可以一起求,如果用f【i】表示第i行的01串,那么有转移方程:

f【i】=f【i】| (f【i-1】<<(x【i】^2))。

代码

#include<bits/stdc++.h>
using namespace std;
bitset<1000010>f[110];
int l[110],r[110];
int main ()
{
	int n;cin>>n;
	for(int i=1;i<=n;i++)cin>>l[i]>>r[i];
	f[0][0]=1;
	for(int i=1;i<=n;i++)
	{
		for(int j=l[i];j<=r[i];j++)f[i]|=(f[i-1]<<j*j);
	}
	cout<<f[n].count();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nj745

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值