1.判断负环(洛谷p3385)
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pb push_back
const int mod=1e9+7;
int head[2010],cnt,n,m;
int c[2010],vis[2010],dis[2010];
struct no
{
int x,w,next;
}ed[6010];
void add(int x,int y,int z)
{
ed[++cnt].x=y;
ed[cnt].w=z;
ed[cnt].next=head[x];
head[x]=cnt;
}
bool spfa()
{
queue<int>q;
memset(c,0,sizeof(c));
memset(vis,0,sizeof(vis));
memset(dis,0x7f,sizeof(dis));
vis[1]=1;
c[1]=1;
dis[1]=0;
q.push(1);
while(q.size())
{
int p=q.front();
q.pop();
vis[p]=0;
for(int i=head[p];i;i=ed[i].next)
{
int x=ed[i].x;
int w=ed[i].w;
if(dis[x]>dis[p]+w)
{
dis[x]=dis[p]+w;
if(!vis[x])
{
c[x]++;
if(c[x]>n)return 1;
vis[x]=1;
q.push(x);
}
}
}
}
return 0;
}
void solve()
{
memset(head,0,sizeof(head));
cnt=0;
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
add(x,y,z);
if(z>=0)add(y,x,z);
}
if(spfa())cout<<"YES\n";
else cout<<"NO\n";
}
int main ()
{
int t;cin>>t;
while(t--)solve();
return 0;
}
简要说明:
可以用spfa判断负环,如果一个点进入队列超过了n次,它的目前最短路径上的点数就超过了n个点,意味着出现了负环。
2.差分约束(洛谷p5960)
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pb push_back
#define mod 998244353
int head[5010],cnt,n,m;
int c[5010],dis[5010],vis[5010];
struct no
{
int x,w,next;
}ed[10010];
void add(int x,int y,int z)
{
ed[++cnt].x=y;
ed[cnt].w=z;
ed[cnt].next=head[x];
head[x]=cnt;
}
bool spfa()
{
memset(dis,0x7f,sizeof(dis));
queue<int>q;
q.push(0);
vis[0]=1;
dis[0]=0;
c[0]=1;
while(q.size())
{
int p=q.front();
q.pop();
vis[p]=0;
for(int i=head[p];i;i=ed[i].next)
{
int x=ed[i].x;
int w=ed[i].w;
if(dis[x]>dis[p]+w)
{
dis[x]=dis[p]+w;
if(!vis[x])
{
vis[x]=1;
c[x]++;
if(c[x]>n)return 1;
q.push(x);
}
}
}
}
return 0;
}
int main ()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
add(y,x,z);
}
for(int i=1;i<=n;i++)add(0,i,0);
if(spfa())cout<<"NO\n";
else
{
for(int i=1;i<=n;i++)cout<<dis[i]<<' ';
}
return 0;
}
简要说明:
对于Xu-Xv<=y的条件,可以将其转化为 Xu<=Xv+y。不难看出这个不等式类似最短路的
dis v<=disu+w,因此可以对每一组不等式建立一条v到u权值为y的边。建立一个超级源点0作为最短路的起点,跑spfa,如果存在负环则无解(容易证明),反之,可直接令x=dis x就是一组满足条件的解。
简单推广:如果条件是Xu-Xv>=y,处理方法是两边同时乘-1,得到Xv-Xu<=-y;
如果条件是Xu-Xv=y,则可以拆分成Xu-Xv<=y与Xu-Xv>=y两个约束条件。