spfa的简单应用

文章介绍了如何使用SPFA(ShortestPathFasterAlgorithm)算法来检测图中的负环以及解决差分约束问题。在负环判断中,当一个点进入队列的次数超过节点数时,表示存在负环。在差分约束系统中,通过构建图并利用SPFA寻找最短路径,若发现负环则表示无解,否则给出满足条件的解。
摘要由CSDN通过智能技术生成

1.判断负环(洛谷p3385)

 

代码:
 

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
#define pb push_back
const int mod=1e9+7;
int head[2010],cnt,n,m;
int c[2010],vis[2010],dis[2010];
struct no
{
	int x,w,next;
}ed[6010];
void add(int x,int y,int z)
{
	ed[++cnt].x=y;
	ed[cnt].w=z;
	ed[cnt].next=head[x];
	head[x]=cnt;
}
bool spfa()
{
	queue<int>q;
	memset(c,0,sizeof(c));
	memset(vis,0,sizeof(vis));
	memset(dis,0x7f,sizeof(dis));
	vis[1]=1;
	c[1]=1;
	dis[1]=0;
	q.push(1);
	while(q.size())
	{
		int p=q.front();
		q.pop();
		vis[p]=0;
		for(int i=head[p];i;i=ed[i].next)
		{
			int x=ed[i].x;
			int w=ed[i].w;
			if(dis[x]>dis[p]+w)
			{
				dis[x]=dis[p]+w;
				if(!vis[x])
				{
					c[x]++;
					if(c[x]>n)return 1;
					vis[x]=1;
					q.push(x);
				}
			}
		}
	}
	return 0;
}
void solve()
{
	memset(head,0,sizeof(head));
	cnt=0;
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		int x,y,z;
		cin>>x>>y>>z;
		add(x,y,z);
		if(z>=0)add(y,x,z);
	}
	if(spfa())cout<<"YES\n";
	else cout<<"NO\n";
}
int main ()
{
	int t;cin>>t;
	while(t--)solve();
	return 0;
}

简要说明:

可以用spfa判断负环,如果一个点进入队列超过了n次,它的目前最短路径上的点数就超过了n个点,意味着出现了负环。

2.差分约束(洛谷p5960)

 

 代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
#define pb push_back
#define mod 998244353
int head[5010],cnt,n,m;
int c[5010],dis[5010],vis[5010];
struct no
{
	int x,w,next;
}ed[10010];
void add(int x,int y,int z)
{
	ed[++cnt].x=y;
	ed[cnt].w=z;
	ed[cnt].next=head[x];
	head[x]=cnt;
}
bool spfa()
{
	memset(dis,0x7f,sizeof(dis));
	queue<int>q;
	q.push(0);
	vis[0]=1;
	dis[0]=0;
	c[0]=1;
	while(q.size())
	{
		int p=q.front();
		q.pop();
		vis[p]=0;
		for(int i=head[p];i;i=ed[i].next)
		{
			int x=ed[i].x;
			int w=ed[i].w;
			if(dis[x]>dis[p]+w)
			{
				dis[x]=dis[p]+w;
				if(!vis[x])
				{
					vis[x]=1;
					c[x]++;
					if(c[x]>n)return 1;
					q.push(x);
				}
			}
		}
	}
	return 0;
}
int main ()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		int x,y,z;
		cin>>x>>y>>z;
		add(y,x,z);
	}
	for(int i=1;i<=n;i++)add(0,i,0);
	if(spfa())cout<<"NO\n";
	else 
	{
		for(int i=1;i<=n;i++)cout<<dis[i]<<' ';
	}
	return 0;
}

简要说明:

对于Xu-Xv<=y的条件,可以将其转化为 Xu<=Xv+y。不难看出这个不等式类似最短路的

dis v<=disu+w,因此可以对每一组不等式建立一条v到u权值为y的边。建立一个超级源点0作为最短路的起点,跑spfa,如果存在负环则无解(容易证明),反之,可直接令x=dis x就是一组满足条件的解。

简单推广:如果条件是Xu-Xv>=y,处理方法是两边同时乘-1,得到Xv-Xu<=-y;

                  如果条件是Xu-Xv=y,则可以拆分成Xu-Xv<=y与Xu-Xv>=y两个约束条件。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nj745

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值