Python数据分析--散点图、条形图

本文深入探讨使用Python进行数据分析时如何绘制散点图和条形图,通过实例展示matplotlib库的使用,揭示数据可视化的重要性和基本技巧。
摘要由CSDN通过智能技术生成
#绘制散点图
#练习:
'''
假设通过爬虫获得了2016年3,10月份每天白天的最高气温(分别位于列表a,b),寻找气温和随时间
(天)变化的某种规律
a=[11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
b=[26,26,28,29,19,21,17,16,19,18,20,20,19,22,23,17,20,21,22,20,15,11,15,5,13,17,10,11,13,12,13,6]
技术要求:plt.scatter(x,y)
'''
#简单版-不清晰
'''
import matplotlib.pyplot as plt
y_3=[11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10=[26,26,28,29,19,21,17,16,19,18,20,20,19,22,23,17,20,21,22,20,15,11,15,5,13,17,10,11,13,12,13]
x=range(1,32)
plt.scatter(x,y_3)
plt.scatter(x,y_10)
#展示
plt.show()
'''
#升级:
'''
import matplotlib.pyplot as plt
y_3=[11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10=[26,26,28,29,19,21,17,16,19,18,20,20,19,22,23,17,20,21,22,20,15,11,15,5,13,17,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乐小凡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值