【高等数学考研速成三重积分(第16讲)】

题型总结

本系列内容主要探究,考研中高等数学可能出现的各种题型的详解。
多重积分这一部分,主要是涉及到多重积分的计算,以及多重积分的一些应用衍生出来的推论公式,有以下几种题型。

1.投影穿线法(先一后二型)

在这里插入图片描述
对于一些相对的两面的表达式都已知的题,可以用先一后二的方法,比如这个题,上底面z1(x,y)和下底面z2(x,y)都是常规面,先对z求积分,再将图形投影到xy坐标系中,求二重积分即可
∭ Ω f ( x , y , z ) d v = ∬ D x y d σ ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \iiint_\Omega{f(x,y,z)}{\rm d}v=\iint_{D_{xy}}d\sigma\int^{z_2(x,y)}_{z_1(x,y)}{f(x,y,z)}{\rm d}z Ωf(x,y,z)dv=Dxydσz1(x,y)z2(x,y)f(x,y,z)dz

2.定限截面法(先二后一型)

在这里插入图片描述
对于类似上面这样的旋转体,已知旋转面方程z=z(x,y),可以用先二后一的方法。
∭ Ω f ( x , y , z ) d v = ∫ b a d z ∬ D x y f ( x , y , z ) d σ \iiint_\Omega{f(x,y,z)}{\rm d}v=\int^a_b{}{\rm d}z\iint_{D_{xy}}f(x,y,z)d\sigma Ωf(x,y,z)dv=badzDxyf(x,y,z)dσ

3.球面坐标法

在这里插入图片描述
如果被积分函数中含有类似x2+y2+z2,或者x2+y2这样的表达式,又或者积分区域是球或圆锥这样与圆有关的图形,就可以采取换坐标系,用球面坐标法。
x = r s i n φ c o s θ , y = r s i n φ s i n θ , z = r c o s φ x=rsin\varphi cos\theta,y=rsin\varphi sin\theta,z=rcos\varphi x=rsinφcosθ,y=rsinφsinθ,z=rcosφ
其中r指的是到原点的半径,varphi指的是z轴正方向往下的夹角,theta指的是从x轴正半轴开始往y正半轴方向的夹角。
∭ Ω f ( x , y , z ) d v = ∭ Ω f ( = r s i n φ c o s θ , r s i n φ s i n θ , r c o s φ ) r 2 s i n φ d θ d φ d r \iiint_\Omega{f(x,y,z)}{\rm d}v=\iiint_\Omega{f(=rsin\varphi cos\theta,rsin\varphi sin\theta,rcos\varphi)r^2sin\varphi}{\rm d}\theta d\varphi dr Ωf(x,y,z)dv=Ωf(=rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdθdφdr

4.空间内物体重心求解

在这里插入图片描述

对于空间内某物体的重心位置(x,y,z)坐标公式

5.空间内物体的转动惯量

在这里插入图片描述
对于空间内某物体关于x轴、y轴、z轴或者原点的转动惯量I。

6.空间内物体的引力求解

在这里插入图片描述
在这里插入图片描述
空间内物体对点(x0,y0,z0)处质量为m的引力大小公式。

7.总结

多重积分这一部分,主要是主要是涉及到多重积分的计算,以及多重积分的一些应用衍生出来的推论公式,背住灵活运用即可。
————插图来自张宇18讲。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值