题型总结
本系列内容主要探究,考研中高等数学可能出现的各种题型的详解。
多重积分这一部分,主要是涉及到多重积分的计算,以及多重积分的一些应用衍生出来的推论公式,有以下几种题型。
1.投影穿线法(先一后二型)
对于一些相对的两面的表达式都已知的题,可以用先一后二的方法,比如这个题,上底面z1(x,y)和下底面z2(x,y)都是常规面,先对z求积分,再将图形投影到xy坐标系中,求二重积分即可
∭
Ω
f
(
x
,
y
,
z
)
d
v
=
∬
D
x
y
d
σ
∫
z
1
(
x
,
y
)
z
2
(
x
,
y
)
f
(
x
,
y
,
z
)
d
z
\iiint_\Omega{f(x,y,z)}{\rm d}v=\iint_{D_{xy}}d\sigma\int^{z_2(x,y)}_{z_1(x,y)}{f(x,y,z)}{\rm d}z
∭Ωf(x,y,z)dv=∬Dxydσ∫z1(x,y)z2(x,y)f(x,y,z)dz
2.定限截面法(先二后一型)
对于类似上面这样的旋转体,已知旋转面方程z=z(x,y),可以用先二后一的方法。
∭
Ω
f
(
x
,
y
,
z
)
d
v
=
∫
b
a
d
z
∬
D
x
y
f
(
x
,
y
,
z
)
d
σ
\iiint_\Omega{f(x,y,z)}{\rm d}v=\int^a_b{}{\rm d}z\iint_{D_{xy}}f(x,y,z)d\sigma
∭Ωf(x,y,z)dv=∫badz∬Dxyf(x,y,z)dσ
3.球面坐标法
如果被积分函数中含有类似x2+y2+z2,或者x2+y2这样的表达式,又或者积分区域是球或圆锥这样与圆有关的图形,就可以采取换坐标系,用球面坐标法。
x
=
r
s
i
n
φ
c
o
s
θ
,
y
=
r
s
i
n
φ
s
i
n
θ
,
z
=
r
c
o
s
φ
x=rsin\varphi cos\theta,y=rsin\varphi sin\theta,z=rcos\varphi
x=rsinφcosθ,y=rsinφsinθ,z=rcosφ
其中r指的是到原点的半径,varphi指的是z轴正方向往下的夹角,theta指的是从x轴正半轴开始往y正半轴方向的夹角。
∭
Ω
f
(
x
,
y
,
z
)
d
v
=
∭
Ω
f
(
=
r
s
i
n
φ
c
o
s
θ
,
r
s
i
n
φ
s
i
n
θ
,
r
c
o
s
φ
)
r
2
s
i
n
φ
d
θ
d
φ
d
r
\iiint_\Omega{f(x,y,z)}{\rm d}v=\iiint_\Omega{f(=rsin\varphi cos\theta,rsin\varphi sin\theta,rcos\varphi)r^2sin\varphi}{\rm d}\theta d\varphi dr
∭Ωf(x,y,z)dv=∭Ωf(=rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdθdφdr
4.空间内物体重心求解
对于空间内某物体的重心位置(x,y,z)坐标公式
5.空间内物体的转动惯量
对于空间内某物体关于x轴、y轴、z轴或者原点的转动惯量I。
6.空间内物体的引力求解
空间内物体对点(x0,y0,z0)处质量为m的引力大小公式。
7.总结
多重积分这一部分,主要是主要是涉及到多重积分的计算,以及多重积分的一些应用衍生出来的推论公式,背住灵活运用即可。
————插图来自张宇18讲。