【高等数学考研速成曲线积分(第17讲)】

题型总结

本系列内容主要探究,考研中高等数学可能出现的各种题型的详解。
曲线积分这一部分,碰到一个曲线积分的题目,第一反应应该是进行判断:是第一型曲线积分还是第二型曲线积分。然后归类到相似题型中,采用各自的办法进行解题。

1.曲线积分的判定(第一型还是第二型)

第一型曲线积分,是对弧长的积分,一般形如
∫ L f ( x , y , z ) d s \int_L{f(x,y,z)}{\rm d}s Lf(x,y,z)ds
第二型曲线积分,是对坐标的积分,一般形如
∫ L f ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z \int_L{f(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz} Lf(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz

2.判定为第一型曲线积分

如果判定为第一型曲线积分,常常有下面几种题型:
(1)参数方程解法(基本解法)
将x,y,z用不相关元t表达

x = x ( t ) , y = y ( t ) , z = z ( t ) , a < = t < = b x=x(t),y=y(t),z=z(t),a<=t<=b x=x(t),y=y(t),z=z(t),a<=t<=b
∫ L f ( x , y , z ) d s = ∫ a b f [ x ( t ) , y ( t ) , z ( t ) ] [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 + [ z ′ ( t ) ] 2 d t \int_L{f(x,y,z)}{\rm d}s=\int_a^b{f[x(t),y(t),z(t)]\sqrt[]{[x'(t)]^2+[y'(t)]^2+[z'(t)]^2}}{\rm d}t Lf(x,y,z)ds=abf[x(t),y(t),z(t)][x(t)]2+[y(t)]2+[z(t)]2 dt
例题:
在这里插入图片描述

(2)利用对称性或轮换性来求解

如果有曲线积分中,x、y、z三个元的取值范围是一样的,那么代表着x、y、z可以相互替换,这与二重积分中的轮换性质类似
例题:
在这里插入图片描述
这个题,利用轮换性简化。
∭ D z 2 d x d y d z = 1 3 ∭ D x 2 + y 2 + z 2 d x d y d z \iiint_D{z^2}{\rm dxdydz}={1\over3}\iiint_D{x^2+y^2+z^2}{\rm dxdydz} Dz2dxdydz=31Dx2+y2+z2dxdydz

2.判定为第二型曲线积分

(1)格林公式(基本解法)
第二型曲线积分的题目基本上都是在考格林公式,设平面有界闭区域D由光滑曲线L围城,P(x,y),Q(x,y)在D上具有一阶连续偏导数,L取正项,则
∫ 闭合 L P ( x , y ) d x + Q ( x , y ) d y = ∬ D ∂ Q ∂ x − ∂ P ∂ y d σ \int_{闭合L}{P(x,y)dx+Q(x,y)dy}=\iint_D{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{\rm d}\sigma 闭合LP(x,y)dx+Q(x,y)dy=DxQyPdσ
但一般不会直接这么考,一般出题会人为破坏条件,让曲线不封闭,但我们可以通过增补或者挖去的方法凑出格林公式。
例题:在这里插入图片描述
在这里插入图片描述
这个题只要将-1到1这条线段补齐即可使用格林公式。
(2)参数方程法
将x,y用不相关元t表达,将其转化为定积分

x = x ( t ) , y = y ( t ) , a < = t < = b x=x(t),y=y(t),a<=t<=b x=x(t),y=y(t),a<=t<=b

∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a b P [ x ( t ) , y ( t ) ] x ′ ( t ) d t + Q [ x ( t ) , y ( t ) ] y ′ ( t ) d t \int_L{P(x,y)dx+Q(x,y)dy}=\int_a^b{P[x(t),y(t)]x'(t)}{\rm d}t+{Q[x(t),y(t)]y'(t)}{\rm d}t LP(x,y)dx+Q(x,y)dy=abP[x(t),y(t)]x(t)dt+Q[x(t),y(t)]y(t)dt

7.总结

曲线积分这一部分,碰到一个曲线积分的题目,第一反应应该是进行判断:是第一型曲线积分还是第二型曲线积分,然后归类到相似题型中,采用各自的办法进行解题。
————例题来自张宇18讲。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值