考研高等数学|曲线积分|题型总结
题型总结
本系列内容主要探究,考研中高等数学可能出现的各种题型的详解。
曲线积分这一部分,碰到一个曲线积分的题目,第一反应应该是进行判断:是第一型曲线积分还是第二型曲线积分。然后归类到相似题型中,采用各自的办法进行解题。
1.曲线积分的判定(第一型还是第二型)
第一型曲线积分,是对弧长的积分,一般形如
∫
L
f
(
x
,
y
,
z
)
d
s
\int_L{f(x,y,z)}{\rm d}s
∫Lf(x,y,z)ds
第二型曲线积分,是对坐标的积分,一般形如
∫
L
f
(
x
,
y
,
z
)
d
x
+
Q
(
x
,
y
,
z
)
d
y
+
R
(
x
,
y
,
z
)
d
z
\int_L{f(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz}
∫Lf(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz
2.判定为第一型曲线积分
如果判定为第一型曲线积分,常常有下面几种题型:
(1)参数方程解法(基本解法)
将x,y,z用不相关元t表达
x
=
x
(
t
)
,
y
=
y
(
t
)
,
z
=
z
(
t
)
,
a
<
=
t
<
=
b
x=x(t),y=y(t),z=z(t),a<=t<=b
x=x(t),y=y(t),z=z(t),a<=t<=b
∫
L
f
(
x
,
y
,
z
)
d
s
=
∫
a
b
f
[
x
(
t
)
,
y
(
t
)
,
z
(
t
)
]
[
x
′
(
t
)
]
2
+
[
y
′
(
t
)
]
2
+
[
z
′
(
t
)
]
2
d
t
\int_L{f(x,y,z)}{\rm d}s=\int_a^b{f[x(t),y(t),z(t)]\sqrt[]{[x'(t)]^2+[y'(t)]^2+[z'(t)]^2}}{\rm d}t
∫Lf(x,y,z)ds=∫abf[x(t),y(t),z(t)][x′(t)]2+[y′(t)]2+[z′(t)]2dt
例题:
(2)利用对称性或轮换性来求解
如果有曲线积分中,x、y、z三个元的取值范围是一样的,那么代表着x、y、z可以相互替换,这与二重积分中的轮换性质类似
例题:
这个题,利用轮换性简化。
∭
D
z
2
d
x
d
y
d
z
=
1
3
∭
D
x
2
+
y
2
+
z
2
d
x
d
y
d
z
\iiint_D{z^2}{\rm dxdydz}={1\over3}\iiint_D{x^2+y^2+z^2}{\rm dxdydz}
∭Dz2dxdydz=31∭Dx2+y2+z2dxdydz
2.判定为第二型曲线积分
(1)格林公式(基本解法)
第二型曲线积分的题目基本上都是在考格林公式,设平面有界闭区域D由光滑曲线L围城,P(x,y),Q(x,y)在D上具有一阶连续偏导数,L取正项,则
∫
闭合
L
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∬
D
∂
Q
∂
x
−
∂
P
∂
y
d
σ
\int_{闭合L}{P(x,y)dx+Q(x,y)dy}=\iint_D{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{\rm d}\sigma
∫闭合LP(x,y)dx+Q(x,y)dy=∬D∂x∂Q−∂y∂Pdσ
但一般不会直接这么考,一般出题会人为破坏条件,让曲线不封闭,但我们可以通过增补或者挖去的方法凑出格林公式。
例题:
这个题只要将-1到1这条线段补齐即可使用格林公式。
(2)参数方程法
将x,y用不相关元t表达,将其转化为定积分
x = x ( t ) , y = y ( t ) , a < = t < = b x=x(t),y=y(t),a<=t<=b x=x(t),y=y(t),a<=t<=b
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a b P [ x ( t ) , y ( t ) ] x ′ ( t ) d t + Q [ x ( t ) , y ( t ) ] y ′ ( t ) d t \int_L{P(x,y)dx+Q(x,y)dy}=\int_a^b{P[x(t),y(t)]x'(t)}{\rm d}t+{Q[x(t),y(t)]y'(t)}{\rm d}t ∫LP(x,y)dx+Q(x,y)dy=∫abP[x(t),y(t)]x′(t)dt+Q[x(t),y(t)]y′(t)dt
7.总结
曲线积分这一部分,碰到一个曲线积分的题目,第一反应应该是进行判断:是第一型曲线积分还是第二型曲线积分,然后归类到相似题型中,采用各自的办法进行解题。
————例题来自张宇18讲。