【高等数学考研速成多元函数微分学(第11讲)】

题型总结

本系列内容主要探究,考研中高等数学可能出现的各种题型的详解

1.多元微分学的定义考法

多元函数微分学要注意辨析以下概念的证明方式:是否连续,偏导数是否存在,是否可微,以及偏导数的连续性。

1.1是否连续的证明方法

一般直接用定义法证明:要证明一个函数在某个点连续,即证明这个函数到这个点的极限等于这个点的函数值即可。
证明函数 f ( x , y ) 在点 ( x 0 , y 0 ) 处连续 , 即证明 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) 证明函数f(x,y)在点(x_0,y_0)处连续,即证明\lim_{(x,y)\rightarrow(x_0,y_0)} f(x,y)=f(x_0,y_0) 证明函数f(x,y)在点(x0,y0)处连续,即证明(x,y)(x0,y0)limf(x,y)=f(x0,y0)
例题1:在这里插入图片描述
证明函数连续:
lim ⁡ ( x , y ) → ( 0 , 0 ) ( x + y ) s i n 1 x 2 + y 2 x = 0 = = f ( 0 , 0 ) \lim_{(x,y)\rightarrow(0,0)}{ (x+y) sin{1\over\sqrt[x]{x^2+y^2}}}=0==f(0,0) (x,y)(0,0)lim(x+y)sinxx2+y2 1=0==f(0,0)
则说明有f(x,y)在点(0,0)连续;

1.2偏导数是否存在

要证明一个函数在某个点偏导数存在,即证明这个函数到在该点的偏导数的极限存在即可。
同样在上题中有,关于x的偏导数是否存在的证明:
lim ⁡ △ n → 0 f ( 0 + △ x , 0 ) − f ( 0 , 0 ) △ x = lim ⁡ △ x → 0 △ x s i n 1 △ x 2 △ x = lim ⁡ △ x → 0 s i n 1 ∣ △ x ∣ {\lim_{\bigtriangleup n\rightarrow0} f(0+\bigtriangleup x,0)-f(0,0)\over \bigtriangleup x}={\lim_{\bigtriangleup x\rightarrow0}{ \bigtriangleup xsin{1\over\sqrt[]{\bigtriangleup x^2}}\over\bigtriangleup x}}=\lim_{\bigtriangleup x\rightarrow0} sin{1\over |\bigtriangleup x|} xlimn0f(0+x,0)f(0,0)=x0limxxsinx2 1=x0limsinx1
则该极限是不存在的,可以判断该偏导数不存在。
关于y的偏导数同样可以证明得出。

1.3是否可微

判断函数z=f(x,y)在点(x0,y0)是否可微,按照下面的步骤来证明;
(1)写出全增量
△ z = f ( x 0 + △ x , y 0 + △ y ) − f ( x 0 , y 0 ) \bigtriangleup z=f(x_0+\bigtriangleup x,y_0+\bigtriangleup y)-f(x_0,y_0) z=f(x0+x,y0+y)f(x0,y0)
(2)写出线性增量
A △ x + B △ y A\bigtriangleup x+B\bigtriangleup y Ax+By
其中A=fx’(x0,y0),b=fy’(x0,y0);
(3)求下面极限,判断是否为0,等于0则说明可微.
lim ⁡ △ x → 0 , △ y → 0 △ z − ( A △ x + B △ y ) △ x 2 + △ y 2 \lim_{\bigtriangleup x\rightarrow0,\bigtriangleup y\rightarrow0} {\bigtriangleup z-(A\bigtriangleup x+B\bigtriangleup y)\over \sqrt[]{\bigtriangleup x^2+\bigtriangleup y^2}} x0,y0limx2+y2 z(Ax+By)

1.4偏导数的连续性

与证明原函数的连续性类似,只要证明极限是否等于函数值即可。

2.链式求导法则

(1)有z=f(u,v) , u=k1(t) , v=k2(t),
则有图像:在这里插入图片描述

即有
d z d t = ∂ z ∂ u d u d t + ∂ z ∂ v d v d t \frac{dz}{dt}=\frac{\partial z}{\partial u}\frac{du}{dt} +\frac{\partial z}{\partial v}\frac{dv}{dt} dtdz=uzdtdu+vzdtdv
(2)有z=f(u,v),u=k1(x,y),v=k2(x,y)
在这里插入图片描述

即有
d z d x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x , d z d y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}, \frac{dz}{dy}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y} +\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} dxdz=uzxu+vzxv,dydz=uzyu+vzyv
(3)有z=f(u,v),u=k1(x,y),v=k2(y)
在这里插入图片描述

即有
d z d x = ∂ z ∂ u ∂ u ∂ x , d z d y = ∂ z ∂ u d u d y + ∂ z ∂ v d v d y \frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} , \frac{dz}{dy}=\frac{\partial z}{\partial u}\frac{du}{dy} +\frac{\partial z}{\partial v}\frac{dv}{dy} dxdz=uzxu,dydz=uzdydu+vzdydv
例题如下:在这里插入图片描述

3.隐函数的相关问题

3.1二元方程的隐函数问题

隐函数存在定理1:
如果存在某点(x0,y0)以及二元方程F(x,y),有F(x0,y0)=0,且有Fx’(x0,y0)!=0,则在点(x0,y0)的领域范围内存在一个隐函数,y=f(x),且有dy/dx=-Fx’/Fy’等式存在。

3.2三元方程的隐函数问题

三元方程的隐函数问题较为复杂,但与二元的有很大相似之处。
隐函数存在定理2:
如果存在某点(x0,y0,z0)以及三元方程F(x,y,z),有F(x0,y0,z0)=0,且有Fx’(x0,y0,z0)!=0,则在点(x0,y0,z0)的领域范围内存在一个隐函数,z=f(x,y),且有
∂ z ∂ x = − F x ′ F z ′ \frac{\partial z}{\partial x}=-\frac{F'_x}{F'_z} xz=FzFx
∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial y}=-\frac{F'_y}{F'_z} yz=FzFy成立

4.多元函数的极值最值问题

一般是二元函数,通常有三种题型,一种是一般函数极值点的求解,另一种是带有限制函数的最值求解,最后一种是求解某一区域内的最值。

4.1一般函数极值点的求解

通常用以下步骤解题:
(1)找到可疑点,先求出Fx’=0,Fy=0时的x,y值,得到几个可能是极值点的位置
(2)求出二重导数,f’‘xx(x0,y0)=A,f’‘yy(x0,y0)=C,f’'xy(x0,y0)=B,
判断 △ = A C − B 2 , △ > 0 则为极值点 , < 0 则不为, = 0 则不确定 \bigtriangleup=AC-B^2,\bigtriangleup>0则为极值点,<0则不为,=0则不确定 =ACB2>0则为极值点,<0则不为,=0则不确定
同时如果A>0,则为极小值,A<0,则为极大值。

4.2带有限制函数的最值求解

在这里插入图片描述

4.3某一区域内的最值

在这里插入图片描述

4.总结

本章没有难点,较为基础,但容易忽略,要注意辨析概念,以及熟练掌握多元函数的求导法则。

–部分截图引用自张宇18讲中的内容。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值