【Intel校企合作课程】基于VGG-16的猫狗识别

目录

1.作业简介:猫狗大战

1.1问题描述:

1.2预期解决方案:

1.3数据集:

1.4图像展示:

2数据预处理

2.1数据集结构:

2.2探索性数据分析 

2.3数据处理

2.4数据增强

3.使用卷积神经网络识别猫狗图像 

3.1VGG-16架构

​编辑

4.在GPU上训练

4.1参数设置

4.2在GPU上训练 

​编辑4.3保存模型 

4.4使用模型进行推理测试 

5.在CPU上验证 

 5.1 加载模型到cpu环境

5.2尝试直接在CPU上进行训练

6.OneAPI优化

6.1Transfer Learning with oneAPI AI Analytics Toolkit进行迁移学习

 6.2使用Intel Extension for PyTorch进行优化 

6.3保存使用Intel Extension for PyTorch进行优化的模型

 ​编辑

 6.4使用 Intel® Neural Compressor 量化模型

6.5使用量化后的模型在 CPU上进行推理 

 7.总结


1.作业简介:猫狗大战

1.1问题描述:

        在这个项目中,你将面临着一个经典的机器学习项目——猫狗挑战,你的任务是需要建立一个模型,能够准确识别图像类别是猫还是狗。

1.2预期解决方案:

        你的目标是通过训练一个机器学习模型,使其在给定一张图像时能够准确地预测图像中是猫还是狗。模型应该能够推广到未见过的图像,并在测试数据上表现良好。我们期待您将其部署到模拟的生产环境中——这里推理时间和二分类准确度(F1分数)将作为评分的主要依据。

1.3数据集:

        链接:百度网盘 请输入提取码

        提取码:jc34

1.4图像展示:

2数据预处理

2.1数据集结构:

        有test,train,val三个部分,每个部分中含有dog和cat

2.2探索性数据分析 

        分别取了train数据集下的随机不重样3只狗,3只猫的图像进行展示:

# 随机不重样的抽选3个dog,3个cat
select_dog = np.random.choice(good_imgs, 3, replace = False)
select_cat = np.random.choice(bad_imgs, 3, replace = False)

# 使用pit打印出来
fig = plt.figure(figsize = (20,10))
for i in range(6):
    if i < 3:
        fp = f'{train_dir}\\dog\\{select_dog[i]}'
        label = 'dog'
    else:
        fp = f'{train_dir}\\cat\\{select_cat[i-3]}'
        label = 'cat'
    ax = fig.add_subplot(2, 3, i+1)#两行三列
    
    # to plot without rescaling, remove target_size
    fn = cv2.imread(fp)
    fn_gray = cv2.cvtColor(fn, cv2.COLOR_BGR2GRAY)
    plt.imshow(fn, cmap='Greys_r')
    plt.title(label)
    plt.axis('off')
plt.show()

# 总的训练集样本数
print(f'dog数量为: {len(good_imgs)}')
print(f'cat数量为: {len(bad_imgs)}')

2.3数据处理

        在本项目中,为了更好地提取出图像,我构建了一个函数,能够将每个主文件夹下的图片提取出来,并且打好了标签。

# 创建自定义数据集
class SelfDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.classes = ['dog', 'cat']
        self.data = self.load_data()

    def load_data(self):
        data = []
        for class_idx, class_name in enumerate(self.classes):
            class_path = os.path.join(self.root_dir, class_name)
            for file_name in os.listdir(class_path):
                file_path = os.path.join(class_path, file_name)
                if os.path.isfile(file_path) and file_name.lower().endswith('.jpg'):
                    data.append((file_path, class_idx))
        return data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        img_path, label = self.data[idx]
        img = Image.open(img_path).convert('RGB')
        if self.transform:
            img = self.transform(img)
        return img, label

2.4数据增强

transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)):

        将输入图像的大小调整为(224, 224)像素。

transforms.ToTensor():

        将图像数据从PIL(Python Imaging Library)格式转换为PyTorch张量的格式。

IMAGE_SIZE = 224
# 定义转换关系,将图像转换成Tensor
transform = transforms.Compose([
    transforms.Resize(IMAGE_SIZE),    # 将图像按比例缩放至合适尺寸
    transforms.CenterCrop((IMAGE_SIZE, IMAGE_SIZE)),    # 从图像中心裁剪合适大小的图像
    # 转换Tensor,归一化
    transforms.ToTensor()
])

2.5构建数据集 

        构建数据集之前需要传入数据集目录,这里的训练集,验证集,测试集都进行了数据的转换。

# 创建数据集实例
train_dataset = SelfDataset(root_dir=train_dataset_path, transform=transform)
test_dataset = SelfDataset(root_dir=test_dataset_path, transform=transform)
val_dataset = SelfDataset(root_dir=val_dataset_path, transform=transform)

# 创建 DataLoader
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)

3.使用卷积神经网络识别猫狗图像 

3.1VGG-16架构

        VGG16是由Karen Simonyan和Andrew Zisserman于2014年在论文“VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE SCALE IMAGE RECOGNITION”中提出的一种处理多分类、大范围图像识别问题的卷积神经网络架构,成功对ImageNet数据集的14万张图片进行了1000个类别的归类并有92.7%的准确率。
 

        传统的VGG-16网络的输出是1000的大小,为了适合本项目,将网络改成了2分类问题并进行以下优化:

vgg16_model = models.vgg16(pretrained=True)

# 如果需要微调,可以解冻最后几层
for param in vgg16_model.features.parameters():
    param.requires_grad = False

# 修改分类层
num_features = vgg16_model.classifier[6].in_features
vgg16_model.classifier[6] = nn.Sequential(
    nn.Linear(num_features, 512),
    nn.ReLU(),
    nn.Dropout(0.5),
    nn.Linear(512, 2)
)

4.在GPU上训练

4.1参数设置

       这里我采用了以下几个关键组件来提高训练的精度:

(1):交叉熵损失函数 (nn.CrossEntropyLoss())。交叉熵损失函数是在分类任务中常用的损失函数之一,用于衡量模型预测与真实标签之间的差异。通过最小化这个差异,模型能够更准确地学习分类任务中的模式和特征。

(2):Adam 优化器 (optim.Adam)。Adam 优化器是一种基于梯度的优化算法,被广泛用于深度学习中。它结合了动量优化和学习率衰减,能够更有效地调整模型参数,加速收敛过程,并提高训练的稳定性。

(3):ReduceLROnPlateau 学习率调度器 (optim.lr_scheduler.ReduceLROnPlateau)。该调度器监测模型在验证集上的性能,并在性能停滞时自动降低学习率。通过动态调整学习率,模型更容易克服局部最小值,提高收敛速度,从而提高整体训练效果。这个调度器的使用可以使模型更灵活地适应不同训练阶段的数据分布和模型状态。
 

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(vgg16_model.parameters(), lr=0.001, weight_decay=1e-4)


# 添加学习率调度器
# 使用 ReduceLROnPlateau 调度器
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=3, verbose=True)


# 训练参数
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vgg16_model.to(device)

4.2在GPU上训练 

        在这里,我使用了三个关键的数据集,分别为训练集(train),验证集(val),和测试集(test)。

        训练集(train):

        用途: 用于训练机器学习模型。模型通过学习训练集中的样本来调整参数,以捕捉输入数据的模式和特征。
        特点: 训练集通常是最大的数据集,包含大量用于模型训练的样本。高质量、多样性的训练集有助于提高模型的泛化能力,使其在未见过的数据上表现良好。
        验证集(val):

        用途: 用于调整模型超参数、选择模型架构和进行早停等操作。验证集上的性能评估有助于避免模型在训练集上过拟合,提高对未知数据的泛化能力。
        特点: 验证集通常是从独立于训练集的数据中划分出来的,模型在训练过程中不使用验证集的信息。在训练过程中,通过监控验证集上的性能来调整模型的参数和架构。
测试集(test):

        用途: 用于评估训练好的模型的性能。测试集中的样本是模型在训练和验证过程中未曾见过的数据,因此测试集上的性能评估更接近模型在真实场景中的表现。
        特点: 测试集应该是完全独立于训练集和验证集的,确保模型在测试集上的表现不受过拟合或过度调整的影响。测试集上的性能评估是对模型泛化能力的最终验证。

# 训练循环
num_epochs = 0
consecutive_f1_count = 0

while num_epochs < 8:
    print(f'第{num_epochs+1}次训练开始了')
    vgg16_model.train()  # 设置模型为训练模式
    train_loss = 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)

        # 将数据传递给模型
        outputs = vgg16_model(inputs)

        # 计算损失
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss += loss.item()

    # 在每个 epoch 结束时进行验证
    val_loss = 0.0
    with torch.no_grad():
        for inputs, labels in val_loader:
            inputs, labels = inputs.to(device), labels.to(device)

            # 在验证集上进行推理,可根据需要添加评估代码
            val_outputs = vgg16_model(inputs)
            val_loss += criterion(val_outputs, labels).item()

    # 计算平均训练损失
    avg_train_loss = train_loss / len(train_loader)

    # 计算平均验证损失
    avg_val_loss = val_loss / len(val_loader)

    # 打印训练过程中的损失和验证损失
    print(f'Epoch [{num_epochs+1}], 第{num_epochs+1}轮:训练集损失: {avg_train_loss:.4f}, 验证集损失: {avg_val_loss:.4f}')

    # 在模型训练完后,使用测试集进行最终评估
    vgg16_model.eval()
    all_predictions = []
    all_labels = []
    start_time = time.time()  # 记录开始时间
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)

            # 在测试集上进行推理
            outputs = vgg16_model(inputs)

            # 将预测结果和真实标签保存
            _, predicted = torch.max(outputs, 1)
            all_predictions.extend(predicted.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())

    end_time = time.time()  # 记录结束时间
    elapsed_time = end_time - start_time
    print(f'测试集用的时间为: {elapsed_time:.2f} seconds')

    # 计算F1分数
    f1 = f1_score(all_labels, all_predictions, average='binary')  # 适用于二分类问题

    # 打印每轮的测试F1分数
    print(f'第{num_epochs+1}轮的测试F1分数: {f1:.4f}')


    # 调整学习率
    scheduler.step(f1)

    # 增加训练次数
    num_epochs += 1

        8次训练后的结果:

4.3保存模型 

# 保存模型
torch.save(vgg16_model.state_dict(), 'vgg16_model.pth')

# 打印保存成功的消息
print("模型已保存为 vgg16_model.pth")

4.4使用模型进行推理测试 

import matplotlib.pyplot as plt
import numpy as np

# 选择一张 test_loader 中的图片
sample_image, true_label = next(iter(test_loader))

# 将图片传递给模型进行预测
sample_image = sample_image.to(device)
with torch.no_grad():
    model_output = vgg16_model(sample_image)

# 获取预测结果
_, predicted_label = torch.max(model_output, 1)

# 转换为 NumPy 数组
sample_image = sample_image.cpu().numpy()[0]  # 将数据从 GPU 移回 CPU 并取出第一张图片
predicted_label = predicted_label[0].item()

true_label = true_label[0].item()  # 直接获取标量值

# 获取类别标签
class_labels = ['dog', 'cat']

# 显示图像
plt.imshow(np.transpose(sample_image, (1, 2, 0)))  # 转置图片的维度顺序
plt.title(f'TRUE LABEL IS: {class_labels[true_label]}, PREDICT LABEL IS: {class_labels[predicted_label]}')
plt.axis('off')
plt.show()

5.在CPU上验证 

 5.1 加载模型到cpu环境

class CustomVGG16(nn.Module):
    def __init__(self):
        super(CustomVGG16, self).__init__()
        self.vgg16_model = models.vgg16(pretrained=True)
        for param in self.vgg16_model.features.parameters():
            param.requires_grad = False
        num_features = self.vgg16_model.classifier[6].in_features
        self.vgg16_model.classifier[6] = nn.Sequential(
            nn.Linear(num_features, 512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, 2)
        )
 
    def forward(self, x):
        return self.vgg16_model(x)
 
# 创建 CustomVGG16 模型实例
vgg16_model = CustomVGG16()
 
 
# 加载权重
vgg16_model.vgg16_model.load_state_dict(torch.load('vgg16_model.pth', map_location=torch.device('cpu')))
 

5.2尝试直接在CPU上进行训练

vgg16_model.eval()

# Assuming you have a DataLoader for the test dataset (test_loader)
all_predictions = []
all_labels = []
start_time = time.time()

with torch.no_grad():
    for inputs, labels in test_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        outputs = vgg16_model(inputs)
        _, predicted = torch.max(outputs, 1)
        all_predictions.extend(predicted.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())

end_time = time.time()  # 记录结束时间
elapsed_time = end_time - start_time
print(f'测试集用的时间为: {elapsed_time:.2f} seconds')
f1 = f1_score(all_labels, all_predictions, average='binary')  # 适用于二分类问题
print(f'F1分数为: {f1:.4f}')

        测试结果:

        可见,在cpu上测试用时比较长,我们考率使用oneAPI组件进行优化

6.OneAPI优化

6.1Transfer Learning with oneAPI AI Analytics Toolkit进行迁移学习

class CustomVGG16(nn.Module):
    def __init__(self):
        super(CustomVGG16, self).__init__()
        self.vgg16_model = models.vgg16(pretrained=True)
        for param in self.vgg16_model.features.parameters():
            param.requires_grad = False
        num_features = self.vgg16_model.classifier[6].in_features
        self.vgg16_model.classifier[6] = nn.Sequential(
            nn.Linear(num_features, 512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, 2)
        )

    def forward(self, x):
        return self.vgg16_model(x)

# 创建 CustomVGG16 模型实例
vgg16_model = CustomVGG16()



# 加载权重
vgg16_model.vgg16_model.load_state_dict(torch.load('./vgg16_model.pth', map_location=torch.device('cpu')))

 6.2使用Intel Extension for PyTorch进行优化 

# 将模型移动到CPU
device = torch.device('cpu')
vgg16_model.to(device)

# 重新构建优化器
optimizer = optim.Adam(vgg16_model.parameters(), lr=0.001, weight_decay=1e-4)

# 使用Intel Extension for PyTorch进行优化
vgg16_model, optimizer = ipex.optimize(model=vgg16_model, optimizer=optimizer, dtype=torch.float32)

6.3保存使用Intel Extension for PyTorch进行优化的模型

# 保存模型参数
torch.save(vgg16_model.state_dict(), './vgg16_optimized.pth')
 
# 加载模型参数
loaded_model = CustomVGG16()
loaded_model.load_state_dict(torch.load('./vgg16_optimized.pth'))

 

 6.4使用 Intel® Neural Compressor 量化模型

import os
import torch
 
# 检查文件是否存在
assert os.path.exists("./vgg16_optimized.pth"), "文件不存在"
 
# 尝试加载模型
model = torch.load("./vgg16_optimized.pth")
print("模型加载成功")

        加载完成以后以准确度为评估函数进行量化

from neural_compressor.config import PostTrainingQuantConfig, AccuracyCriterion
from neural_compressor import quantization
import os
 
# 加载模型
model = CustomVGG16()
model.load_state_dict(torch.load('vgg16_optimized.pth'))
model.to('cpu')  # 将模型移动到 CPU
model.eval()
 
# 定义评估函数
def eval_func(model):
    with torch.no_grad():
        y_true = []
        y_pred = []
 
        for inputs, labels in train_loader:
            inputs = inputs.to('cpu')
            labels = labels.to('cpu')
            preds_probs = model(inputs)
            preds_class = torch.argmax(preds_probs, dim=-1)
            y_true.extend(labels.numpy())
            y_pred.extend(preds_class.numpy())
 
        return accuracy_score(y_true, y_pred)
 
# 配置量化参数
conf = PostTrainingQuantConfig(backend='ipex',  # 使用 Intel PyTorch Extension
                               accuracy_criterion=AccuracyCriterion(higher_is_better=True, 
                                                                   criterion='relative',  
                                                                   tolerable_loss=0.01))
 
# 执行量化
q_model = quantization.fit(model,
                           conf,
                           calib_dataloader=train_loader,
                           eval_func=eval_func)
 
# 保存量化模型
quantized_model_path = './quantized_models'
if not os.path.exists(quantized_model_path):
    os.makedirs(quantized_model_path)
 
q_model.save(quantized_model_path)

         结果:

        查看量化后的模型,分别为pt文件和json文件:

6.5使用量化后的模型在 CPU上进行推理 

        加载模型: 

import torch
import json
 
from neural_compressor import quantization
 
# 指定量化模型的路径
quantized_model_path = './quantized_models'
 
# 加载 Qt 模型和 JSON 配置
vgg16_model_path = f'{quantized_model_path}/best_model.pt'
json_config_path = f'{quantized_model_path}/best_configure.json'
 
# 加载 Qt 模型
vgg16_model = torch.jit.load(vgg16_model_path, map_location='cpu')
 
# 加载 JSON 配置
with open(json_config_path, 'r') as json_file:
    json_config = json.load(json_file)
 
# 打印 JSON 配置(可选)
print(json_config)

        进行推理

import torch
from sklearn.metrics import f1_score
from torch.utils.data import DataLoader
import time
 
# 将模型设置为评估模式
vgg16_model.eval()
 
# 初始化变量用于存储真实标签和预测标签
y_true = []
y_pred = []
 
# 开始推理
start_time = time.time()
 
# 设置 batch_size
batch_size = 64
 
# 使用 DataLoader 时设置 batch_size
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
 
# 在推理时处理每个批次
with torch.no_grad():
    for inputs, labels in test_loader:
        # 将输入数据移动到 CPU(如果尚未在 CPU 上)
        inputs = inputs.to('cpu')
        labels = labels.to('cpu')
 
        # 获取模型预测
        preds_probs = vgg16_model(inputs)
        preds_class = torch.argmax(preds_probs, dim=-1)
 
        # 扩展真实标签和预测标签列表
        y_true.extend(labels.numpy())
        y_pred.extend(preds_class.numpy())
 
# 计算 F1 分数
f1 = f1_score(y_true, y_pred, average='weighted')
 
# 计算推理时间
inference_time = time.time() - start_time
 
# 打印结果
print(f"测试集用的时间为: {inference_time} seconds")
print(f"F1分数: {f1}")

        结果:

        发现量化后时间明显减少,并且F1分数稳定。 

 7.总结

  • VGG16 模型具有较好的图像分类效果
  • OneAPI 工具包具有比较明显的优化效果
  • 定期监控模型性能,并根据实际应用中的反馈进行调整和优化。这可以涉及到数据集的更新、模型微调等。

        总体而言,采用VGG-16和OneAPI工具包的组合能够有效提高图像分类任务的训练和推理性能,同时需要注意模型的泛化和持续优化。 

  • 18
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值