machine learing test1

该代码示例展示了如何利用sklearn库中的决策树分类器对iris数据集进行训练,并通过train_test_split进行数据拆分。接着,它应用了成本复杂性剪枝路径(ccp_alpha=0)来优化决策树,并打印出不同剪枝参数下的ccp_alpha值和不纯度(impurities)。
摘要由CSDN通过智能技术生成

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
iris=load_iris()
X=iris.data
y=iris.target

X_train,X_test,y_train,y_test=train_test_split(X,y)
clf=DecisionTreeClassifier(ccp_alpha=0)
clf=clf.fit(X_train,y_train)

pruning_path=clf.cost_complexity_pruning_path(X_train,y_train)

print("ccp_alpha:",pruning_path['ccp_alpha'])
print("impurities:",pruning_path['impurities'])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值