4706. 最短路程(dfs求最短路+思维)

给定一个 n 个节点的树。

节点编号为 1∼n。

树中所有边均为双向边,且长度均已知。

你需要从 1 号点出发,沿着一条路径遍历树中所有点,路径中可以包含重复的点和边。

要求,你的行程总长度应尽可能短。

请你计算,你所需的行程总长度的最小可能值。

注意,你可以在任意点结束你的行程。

输入格式
第一行包含整数 n。

接下来 n−1 行,每行包含三个整数 x,y,w,表示点 x 和点 y 之间存在一条双向边,长度为 w。

输出格式
一个整数,表示行程总长度的最小可能值。

数据范围
前 4 个测试点满足 1≤n≤5。
所有测试点满足 1≤n≤10^5,1≤x,y≤n,0≤w≤2×10^4。

输入样例1:
3
1 2 3
2 3 4
输出样例1:
7
输入样例2:
3
1 2 3
1 3 3
输出样例2:
9

思路:题目明确说明了有n-1条边,所以我们不用去求最短路了,因为直达这个点不饶弯子的话肯定是最短的

我们可以发现,不论我们最终去哪个点,除去起点到达这个点的路径外,其他边我们都需要走两遍

所以我们的答案不就是(所有边的长度)*2-(顶点1到达某个点的距离)

我们想要我们的答案最短,那么我们减去这个边就需要最大,所以dfs求出到达每个点的路径长度,然后找出最大的那个

代码;

#include<bits/stdc++.h>
using namespace std;

#define ll long long
const int N=2e6+5;

int n;
int h[N],e[N],w[N],ne[N],cnt;
void add(int a,int b,int c) {
	e[cnt]=b;
	w[cnt]=c;
	ne[cnt]=h[a];
	h[a]=cnt++;
}
int dfs(int u,int fa) {
	int res=0;
	for(int i=h[u]; ~i; i=ne[i]) {
		int j=e[i];
		if(j==fa)//不能倒回去
			continue;
		res=max(res,dfs(j,u)+w[i]);
	}
	return res;
}
int main() {
	cin>>n;
	memset(h,-1,sizeof h);
	ll sum=0;
	for(int i=0; i<n-1; i++) {
		int a,b,c;
		cin>>a>>b>>c;
		add(a,b,c);
		add(b,a,c);
		sum+=c*2;
	}
	cout<<sum-dfs(1,-1);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值