多元统计分析(5):主成分分析

本文介绍了主成分分析的基本理论,包括如何通过线性组合找到新变量,以及主成分的构造、性质和求解方法。重点讨论了主成分分析的适用条件、注意事项,如多重共线性和数据标准化,并给出了R语言实现的示例。

参考链接:
https://blog.csdn.net/m0_37422217/article/details/104840221

目的:抓住主要矛盾,解释事物内部变量之间的规律性。

途径:找到新的成分,是原始变量的线性组合,而这些变量之间互不相关,从而有更好的性能!!!

5.1 主成分分析的构造

5.1.1 基本理论

设原始变量有P个,记为 X X X。设随机变量的均值为 μ \mu μ,协方差矩阵为 ∑ \sum ,对进行线性组合得到全新的变量 Y Y Y,即得到下方的式子:
f ( x ) = { Y 1 = u 11 X 1 + u 21 X 2 + . . . + u p 1 X P Y 2 = u 12 X 1 + u 22 X 2 + . . . + u p 2 X P . . . . . . Y p = u 11 X 1 + u 21 X 2 + . . . + u p p X P f(x)=\left\{ \begin{aligned} Y_1 & = & u_{11}X_1 + u_{21}X_2 + ...+u_{p1}X_P \\ Y_2& = & u_{12}X_1 + u_{22}X_2 + ...+u_{p2}X_P \\ &&......\\ Y_p & = & u_{11}X_1 + u_{21}X_2 + ...+u_{pp}X_P \end{aligned} \right. f(x)= Y1Y2Yp===u11X1+u21X2+...+u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值