今天我们来看一下神经网络中防止模型过拟合的方法
在机器学习和深度学习中,过拟合是指模型在训练数据上表现得非常好,但在新的、未见过的数据上表现不佳的现象。这是因为模型过于复杂,以至于它学习了训练数据中的噪声和细节,而不是数据的潜在分布。为了解决这个问题,正则化技术被引入,它通过在损失函数中添加一个惩罚项来对模型的复杂度进行限制。
正则化
之前我们在机器学习中介绍过:
- 过拟合:一个假设 在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据 (体现在准确率下降),此时认为这个假设出现了过拟合的现象。(模型过于复杂)
- 欠拟合:一个假设 在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据 ,此时认为这个假设出现了欠拟合的现象。
我们当时的解决办法是重新清洗数据,导致过拟合的一个原因有可能是数据不纯,