在计算机视觉任务中,目标与背景的特征区分是核心挑战,尤其面对低对比度、复杂背景或微小目标时,传统卷积网络易受空间冗余信息干扰,难以精准捕捉目标的局部细节与全局关联性。同时,固定权重的卷积操作缺乏对特征空间分布的自适应调整能力,导致对不同场景、不同尺度目标的适配性不足。为解决这一问题,研究者们在注意力机制与残差学习的基础上,提出了融合通道与空间双重注意力的特征增强模块,RCSAB(Residual Channel-Spatial Attention Block)便是其中的典型代表,其核心目标是通过自适应特征校准,强化有效特征、抑制无效干扰,提升模型对目标特征的感知与分辨能力。


1. RCSAB原理
RCSAB 的核心原理是残差学习与双重注意力校准的协同作用。一方面,借助残差连接保留原始特征信息,缓解深层网络中的梯度消失问题,确保特征在传递过程中不丢失关键细节;另一方面,通过通道注意力与空间注意力的分步校准,实现对特征的精准优化。通道注意力模块聚焦于特征通道间的关联性,自适应学习不同通道的重要性权重,突出对目标检测 / 分割起关键作用的通道特征(如目标的纹理、轮廓通道),抑制背景占主导的冗余通道;空间注意力模块则针对特征图的空间分布,精准定位目标所在区域,增强目标区域的特征响应,弱化背景区域的干扰信息,最终实现 “通道选优 + 空间聚焦” 的双重特征提纯。

RCSAB 的结构遵循 “特征输入→残差分支→双重注意力校准→特征融合→输出” 的逻辑,具体可拆解为:
特征输入:接收前一层网络输出的多通道特征图,作为后续处理的基础;
残差分支:通过 1×1 卷积进行通道维度调整,降低计算复杂度,同时保留残差连接的路径,确保原始特征与优化后特征的有效融合;
通道注意力子模块:对特征图进行全局平均池化与全局最大池化,聚合通道维度的全局信息,再通过轻量级全连接网络学习通道权重,最后通过 Sigmoid 激活函数生成通道注意力图,与原始特征图进行逐通道相乘,完成通道维度的特征校准;
空间注意力子模块:对通道校准后的特征图进行通道维度的平均池化与最大池化,得到两个单通道的空间特征图,拼接后通过 3×3 卷积提取空间关联信息,再经 Sigmoid 激活生成空间注意力图,与特征图逐元素相乘,实现空间维度的特征增强;
特征融合与输出:将经过双重注意力校准的特征图与残差分支的原始特征图相加,通过激活函数输出优化后的特征图,为后续网络层提供更具辨识度的特征表示。
2. RCSAB习作思路
目标检测中的优点
RCSAB 在目标检测中能够有效提升模型对目标的感知灵敏度与定位精度。其通道注意力机制可自适应筛选出对目标识别关键的特征通道,即使面对低对比度、小尺度目标,也能强化目标的微弱特征响应,避免目标特征被背景噪声掩盖;空间注意力机制则能精准聚焦目标所在区域,减少背景 clutter 对检测框回归的干扰,降低误检与漏检风险。同时,残差连接确保了特征传递的完整性,使深层网络仍能捕捉到目标的细粒度细节,助力模型在复杂场景(如遮挡、多目标重叠)中精准区分不同目标,提升检测结果的可靠性与鲁棒性。
图像分割中的优点
在图像分割任务中,RCSAB 凭借双重注意力校准能力,显著提升了分割掩码的精准度与边界完整性。通道注意力模块可强化与目标语义相关的特征通道(如前景目标的纹理、材质通道),抑制背景通道的干扰,使模型更清晰地分辨前景与背景的语义边界;空间注意力模块则能精准定位目标的像素级区域,即使面对不规则形状、边缘模糊的目标,也能细化分割边界,减少像素级分类错误。此外,残差连接带来的梯度流畅性,让深层网络能够学习到更丰富的上下文信息,助力模型处理多尺度目标分割场景,实现从粗粒度到细粒度的精准分割,提升分割结果的一致性与完整性。
3. YOLO与RCSAB的结合
将 RCSAB 集成到 YOLO 系列模型中,可从特征质量与检测性能两方面实现显著提升。一方面,RCSAB 的双重注意力校准能为 YOLO 的特征金字塔提供更具辨识度的特征,强化小目标、低对比度目标的特征响应,弥补 YOLO 在细小组标检测中的短板;另一方面,通过抑制背景冗余信息,减少无关特征对检测头的干扰,提升 YOLO 对复杂背景下目标的定位精度与分类准确率,同时残差结构与 YOLO 的网络架构兼容性强,无需大幅修改模型结构即可实现性能增益。
4.RCSAB代码部分
YOLO11|YOLO12|改进| 残差通道-空间注意力块RCSAB,通过残差连接,结合通道与空间双重注意力机,强化目标相关特征、抑制背景干扰,提升检测能力_哔哩哔哩_bilibili
YOLOv11模型改进讲解,教您如何根据自己的数据集选择最优的模块提升精度_哔哩哔哩_bilibili
用一篇论文教您如何使用YOLOv11改进模块写一篇1、2区论文_哔哩哔哩_bilibili
YOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili
代码获取:YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve
5. RCSAB到YOLOv11中
第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。
第二:在task.py中导入包
第三:在task.py中的模型配置部分下面代码
第四:将模型配置文件复制到YOLOV11.YAMY文件中
第五:运行代码
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld
import torch
if __name__=="__main__":
# 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
model = YOLO("/home/shengtuo/tangfan/YOLO11/ultralytics/cfg/models/11/yolo11_RCSA.yaml")\
# .load(r'E:\Part_time_job_orders\YOLO\YOLOv11\yolo11n.pt') # build from YAML and transfer weights
results = model.train(data="/home/shengtuo/tangfan/YOLO11/ultralytics/cfg/datasets/VOC_my.yaml",
epochs=300,
imgsz=640,
batch=4,
# cache = False,
# single_cls = False, # 是否是单类别检测
# workers = 0,
# resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
amp = False
)
3万+

被折叠的 条评论
为什么被折叠?



