pytorch下yolov8模型实现目标检测(全网最简洁快速,一眼懂)

最近研究了一个目标检测项目,需要对水稻进行检测,yolov8的模型官网都封装好了,官网地址:Home - Ultralytics YOLO Docs本文给急需目标检测的同学参考,非常急的那种,废话少说,下面是所有代码:

import os
import torch
from ultralytics import YOLO

os.environ['KMP_DUPLICATE_LIB_OK']='True'
def main():

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(device)

    model = YOLO('yolov8n.pt').to(device)

    model.train(data='safehat.yaml', epochs=100, device=device, workers=0,batch=2)

    model.val(device=device)

if __name__ == '__main__':
    main()

还需要一个yolov8n.pt的模型文件,这个官网可以下载我就不给了,下载后把官网文件中的yolov8n.pt拿出来和代码放到同一文件夹下面就可以了,记得安装ultralytics库,该代码搭配一个配置文件safehat.ya

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

焚詩作薪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值