最近研究了一个目标检测项目,需要对水稻进行检测,yolov8的模型官网都封装好了,官网地址:Home - Ultralytics YOLO Docs,本文给急需目标检测的同学参考,非常急的那种,废话少说,下面是所有代码:
import os
import torch
from ultralytics import YOLO
os.environ['KMP_DUPLICATE_LIB_OK']='True'
def main():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
model = YOLO('yolov8n.pt').to(device)
model.train(data='safehat.yaml', epochs=100, device=device, workers=0,batch=2)
model.val(device=device)
if __name__ == '__main__':
main()
还需要一个yolov8n.pt的模型文件,这个官网可以下载我就不给了,下载后把官网文件中的yolov8n.pt拿出来和代码放到同一文件夹下面就可以了,记得安装ultralytics库,该代码搭配一个配置文件safehat.ya