机器学习算法分类 评估 调优-第二部分

4交叉验证和网格搜索对k紧邻算法的调优
4.1交叉验证

所有数据n等分,然后选择不同分数的i/n为训练集,剩余的分数作验证集,

然后可以得到不同的准确率

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RWDqyO0z-1655610877782)(C:\Users\Administrator\Desktop\QQ截图20220618121023.png)]

4.2网格搜索-超参数搜索

超参数:就是需要手动设置的参数。那么对于交叉验证来说,每组超参数都采用交叉验证呢个开进行评估的画,就可以最后选出做最优参数组合建立模型

API:sklrearn.model_selection.GridSearchCV

参数:
sklearn.model_selection.GridSearchCV(estimator, param_ grid=None,cv
=None)

  • 对估计器的指定参数值进行详尽搜索

  • estimator: 估计器对象(就是指用的什么算法、模型)

  • param_ grid: 估计器参数(dict)“n_ neighbors”:[1,3,5]}

  • cv:指定几折交叉验证(一般用10)

  • fit: 输入训练数据

  • score:准确率

    结果分析:

  • best_score_:在交叉验证中验证的最好结果

  • best_ estimator_ :最好的参数模型

  • cv_results_:每次交叉验证后的测试集准确率结果和训练集准确
    率结果

6估计器分类算法-决策树-随机森林

1 决策树API
def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    # 获取数据
    titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 处理数据,找出特征值和目标值
    x = titan[['pclass', 'age', 'sex']]

    y = titan['survived']

    print(x)
    # 缺失值处理
    x['age'].fillna(x['age'].mean(), inplace=True)

    # 分割数据集到训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 进行处理(特征工程)特征-》类别-》one_hot编码
    dict = DictVectorizer(sparse=False)

    x_train = dict.fit_transform(x_train.to_dict(orient="records"))

    print(dict.get_feature_names())

    x_test = dict.transform(x_test.to_dict(orient="records"))

    # print(x_train)
    # 用决策树进行预测
    # dec = DecisionTreeClassifier()s
    #
    # dec.fit(x_train, y_train)
    #
    # # 预测准确率
    # print("预测的准确率:", dec.score(x_test, y_test))
    #
    # # 导出决策树的结构
    # export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])

    # 随机森林进行预测 (超参数调优)
    rf = RandomForestClassifier()

    param = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}

    # 网格搜索与交叉验证
    gc = GridSearchCV(rf, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    print("准确率:", gc.score(x_test, y_test))

    print("查看选择的参数模型:", gc.best_params_)

    return None
2 决策树结构的保存

1、sklearn.tree.export_ graphviz() 该函数能够导出DOT格式
tree.export_ graphviz(estimator,out_ file=‘tree.dot’,feature_ names=[",'l])

2、工具:(能够将dot文件转换为pdf、png)

安装graphviz

  • ubuntu:sudo apt- get install graphviz
  • Mac:brew install graphviz

3、运行命令
然后我们运行这个命令
$ dot -Tpng tree.dot -0 tree.png

3 决策树的优缺点

优点:

  • 简单的理解和解释,树木可视化。
  • 需要很少的数据准备,其他技术通常需要数据归一化

缺点:

  • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,
    这被称为过拟合。

改进:

  • 减枝cart算法(决策树API当中已经实现,随机森林参数调优有相关介绍)
    随机森林
4 随机森林

建立多个树的过程:N个样本,M个特征

  1. 随机在N个样本中选择一个样本,重复n次
  2. 随机在M个特征中选出m个特征,建立决策树
  3. 采取bootstrap抽样
5随机森林的API

class sklearn.ensemble.RandomForestClassifier(

**n_ estimators= 10, **

criterion=‘gini’,

**max_ depth=None, **

bootstrap=True,

random_ _state=None)

随机森林分类器

n_ estimators: integer, optional (default= 10)森林里的树木数量
120,200,300,500,800,1200

criteria: string, 可选(default =“gini”) 分割特征的测量方法
max_ depth: integer或None, 可选(默认=无)树的最大深度
5,8,15,25,30
max_ _features=“auto”,每个决策树的最大特征数量

  • If “auto”, then max_ features= =sqrt(n_ features) .

  • If “sqrt”, then imax_ features= =sqrt(n_ features) “(same as “auto”).

  • If “log2”, then imax_ .features =log2(n_ features)".

  • If None, then i’max_ features=n_ features .

    bootstrap: boolean, optional (default = True) 是否在构建树时使用放回抽样

6随机森林的优点
  • 在当前所有算法中,具有极好的准确率
  • 能够有效地运行 在大数据集上
  • 能够处理具有高维特征的输入样本,而且不需要降维
  • 能够评估各个特征在分类问题上的重要性
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值