sklearn中的决策树中三个参数的含义

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0)

sklearn中的DecisionTreeClassifier的参数众多, 但是重要的并不是很多, 其中比较难以搞明白的就是splitter, max_features,random_state这三个参数, 这篇文章就以一个简单的案例进行讲解.

import pandas as pd
import graphviz
from sklearn.tree import DecisionTreeClassifier,export_graphviz

df = pd.DataFrame({"房产": [1, 0, 0, 1, 1, 0, 0, 0, 0, 1], "婚姻": [1, 0, 1, 0, 2, 2, 1, 0, 1, 2],"年收入":[125, 100, 100, 110, 60, 95, 85, 75, 90, 220], "lable":[1, 1, 1, 1, 1, 0, 0, 1, 0, 1]})
X = df.iloc[:, :3]
y = df["lable"]
tree = DecisionTreeClassifier(splitter='random', 
                    max_features=1,
#                     random_state=2
                             )
tree.fit(X, y)
dot_data = export_graphviz(tree, out_file=None, feature_names=X.columns, class_names=['不能', '能'], filled=True, rounded=True)
graphviz.Source(dot_data)

splitter, max_features,random_state这三个参数之间会相互影响, 刚开始并不是很容易理解, 因为sklearn中的使用和原始的算法并不是完全相同, 而且实际的算法会考虑到很多工程类的问题, 不是简单的数学算法能够顾全的.先分别说一下:

splitter: 有两个可选项, 分别是"random", "best", best很好理解就是每次选取该特征最合适的分裂点; random就是每次是随机选取一个分裂点, 这会和 max_features,random_state选取值有关, 下面细说.

max_features: 有很多可选项, 具体可以参考官网, 我们这里直说 int 型的参数的含义, 是每次分割的时候选取的特征数, 注意并不是创建整棵树选取的特征数;

random_state: 就是随机数的种子, 但是这个种子会决定上面两个特征的"随机", 如果这个随机种子确定了, 那么及时上面的是splitter是random, max_features是小于全部特征数的, 那么也是确定的;  如果random_state没有指定, 也就是None, 那么有很大的随机性, 每次的模型都是不一致的;

下面使用案例进行说明:

1. splitter='best', max_features=3 由于所有的特征是3个, 所以每次分裂需要考虑三个特征, 并且每个特征都是选取最好的分裂点, 所以每次就是(训练集)最好的情况, 没有变化, 这时random_state的值是对模型似乎没有影响的, 我们多次尝试都是下面的结果,

但是,有一种可能是: 训练集上的最优分裂点不是唯一的, 这时在测试集上就会有很大的差别, 下方是另外一个数据集的情况

from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
import graphviz
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
X = housing["data"][:10, :3]
y = housing["target"][:10]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)

tree = DecisionTreeRegressor(max_depth=2)
tree.fit(X_train, y_train)
print(tree.score(X_train, y_train))
print(tree.score(X_test, y_test))
dot_data = export_graphviz(tree, out_file=None, filled=True, rounded=True)
graphviz.Source(dot_data)

多次运行, 会有四种不同的分裂模型, 其中的分裂特征和分裂点是不同的, 但是对于训练数据都是最好的情况, 但是对于测试集天差地别, 测试集上的得分从-0.5到0.97

 

 

 综上, 决策树是很容易过拟合的
如果是全部特征和取最优分裂点仅仅想让测试结果一致, 可以加上random_state为定值 

 2. splitter='random',  max_features=3, random_state=None

如果仔细分析原始数据就可以知道, 房产的取值是0, 1; 婚姻的取值是0, 1; 年收入的取值范围较大60-220;通过计算可知; 房产的中间值的熵无论如何是大于婚姻的中间任何值的, 年收入的取值范围较大, 取值好的时候是会好于房产的, 取值不好的时候可能比婚姻的结果还差, 如果考虑到概率, 年收入的情况并不会很好, 结果也是如此, 多次运行的结果如下(我们只查看第一个分裂点即可)

  

  大部分都是前两种情况, 第三张图是运行几十次才有一次这种结果, 从中也可以看到分裂点都是随机选取的, 并不是两点的中间位置

 3. splitter='random',  max_features=1, random_state=None

此时特征和特征的分裂点都是随机的, 所以随机性比较大, 会出现各种情况

   

 4 splitter='random',  max_features=1, random_state=定值

此时就没有任何随机性了, 多次运行都是相同的结果

 5. splitter='best',  max_features=1, random_state=None

此时的分裂点都是每个特征最好的分裂点, 就看随机选取的是哪个特征了, 多次运行结果如下图

其他情况依次类推

就分析到这里, 有什么问题可以相互探讨

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
决策树模型的参数优化通常包括以下几个方面: 1. 树的深度:决策树的深度影响模型的拟合能力和泛化能力。如果树的深度过大,容易出现过拟合现象;如果树的深度过小,容易出现欠拟合现象。一般来说,我们可以通过交叉验证来选择一个合适的树深度。 2. 决策节点的最小样本数:决策节点的最小样本数指每个节点最少需要多少个样本才能进行分裂。如果这个值过小,容易出现过拟合;如果这个值过大,容易出现欠拟合。一般来说,我们可以通过交叉验证来选择一个合适的最小样本数。 3. 叶节点的最小样本数:叶节点的最小样本数指每个叶节点最少需要多少个样本。如果这个值过小,容易出现过拟合;如果这个值过大,容易出现欠拟合。一般来说,我们可以通过交叉验证来选择一个合适的最小样本数。 下面是使用交叉验证选择最优决策树参数的Python代码: ```python from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_iris # 加载数据集 iris = load_iris() X = iris.data y = iris.target # 定义参数范围 param_grid = { 'max_depth': [3, 4, 5, 6, 7], 'min_samples_split': [2, 3, 4, 5], 'min_samples_leaf': [1, 2, 3, 4] } # 创建决策树模型 dtc = DecisionTreeClassifier() # 使用交叉验证选择最优参数 grid_search = GridSearchCV(dtc, param_grid, cv=5) grid_search.fit(X, y) # 输出最优参数 print(grid_search.best_params_) ``` 这个代码使用了sklearn的GridSearchCV类来进行交叉验证。我们首先加载了一个iris数据集,然后定义了三个参数的范围:树的深度、决策节点的最小样本数和叶节点的最小样本数。然后,我们创建了一个DecisionTreeClassifier对象,使用GridSearchCV类进行交叉验证,最后输出最优参数。 在实际问题,我们可以根据具体情况调整参数范围,以及交叉验证的折数等参数

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值