#559. 剪绳子(3月27)

该问题是一个数学与算法结合的题目,目标是找出在不拼接的情况下,如何从给定的N根不同长度的绳子中裁剪出M根等长的绳子,使这些绳子的长度最大化。通过二分搜索的方法,对每个可能的绳子长度进行检查,看是否能裁剪出至少M根,从而逐步缩小答案范围。最终找到的最大值即为最长的绳子长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

有 N 根绳子,第 i 根绳子长度为 Li,现在需要 M 根等长的绳子,你可以对 N 根绳子进行任意裁剪(不能拼接),请你帮忙计算出这 M 根绳子最长的长度是多少。

输入格式

第一行包含 2 个正整数 N, M,表示原始绳子的数量和需求绳子的数量。
第二行包含 N个整数,其中第 i 个整数 Li表示第 i 根绳子的长度。

输出格式

输出一个数字,表示裁剪后最长的长度,保留两位小数。

样例

输入数据 1

3 4
3 5 4

输出数据 1

2.50

数据范围

1≤N,M≤100000
0<Li<10^9

【思路】 通过二分计算每条绳子的可切割的数量是否满足m,如果不满足m,继续在右部分继续查找。
【代码】

#include<bits/stdc++.h>
using namespace std;
long long a[100100];
int n,m;
int main()
{
	cin >>n>>m;
	for(int i=1;i<=n;i++)
		cin>>a[i];
	double l=0,r=1e9;
	while(r-l>1e-3)
	{
		double mid=(l+r)/2;
		int ans= 0;
		for(int i=1;i<=n;i++)
		{
			ans+=a[i]/mid;
			if(ans>=m)
			{
				l=mid;
				break;
			}
		}
		if(ans<m)  
		   r=mid;
	}
	printf("%.2lf",l);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值