西瓜书【机器学习(周志华)】目录

第一部分:基础概念

  1. 机器学习概述
    • 1.1 人工智能与机器学习
    • 1.2 机器学习分类
    • 1.3 机器学习应用
    • 1.4 机器学习常用术语解释
  2. 模型的评估与选择
    • 2.1 经验误差与过拟合
    • 2.2 评估方法
    • 2.3 性能度量
    • 2.4 偏差与方差

第二部分:核心算法

  1. 线性模型
    • 3.1 什么是回归
    • 3.2 一元线性回归
    • 3.3 多元线性回归
    • 3.4 对数几率回归
    • 3.5 线性判别分析(LDA)
    • 3.6 多分类学习
    • 3.7 类别不平衡问题
  2. 决策树
    • 4.1 决策树概述
    • 4.2 ID3算法
    • 4.3 C4.5算法
    • 4.4 CART决策树
    • 4.5 剪枝处理
    • 4.6 连续与缺失值处理
  3. 神经网络
    • 5.1 神经元模型
    • 5.2 感知机与多层网络
    • 5.3 反向传播算法
    • 5.4 全局最小与局部最小
  4. 支持向量机
    • 6.1 间隔与支持向量
    • 6.2 对偶问题
    • 6.3 核函数
    • 6.4 软间隔
  5. 贝叶斯分类器
    • 7.1 贝叶斯决策论
    • 7.2 极大似然估计(MLE)
    • 7.3 朴素贝叶斯分类器
    • 7.4 EM算法

第三部分:高级主题

  1. 集成学习
    • 8.1 个体与集成
    • 8.2 Boosting
    • 8.3 Bagging与随机森林
    • 8.4 结合策略
    • 8.5 多样性(diversity)
  2. 聚类
    • 9.1 聚类任务
    • 9.2 性能度量
    • 9.3 距离计算
    • 9.4 k-means聚类
    • 9.5 学习向量量化(LVQ)
    • 9.6 高斯混合模型(GMM)
    • 9.7 密度聚类
    • 9.8 层次聚类
  3. 降维
  • 10.1 k近邻学习(kNN)
  • 10.2 主成分分析(PCA)
  1. 特征选择与稀疏学习
  • 11.1 子集搜索与评价
  • 11.2 过滤式选择
  • 11.3 包裹式选择
  • 11.4 嵌入式选择与正则化

第四部分:扩展领域

  1. 计算学习理论
    (无子章节)
  2. 半监督学习
  • 13.1 主动学习与半监督学习
  • 13.2 生成式方法
  • 13.3 半监督SVM
  • 13.4 图半监督学习
  • 13.5 基于分歧的方法
  • 13.6 半监督聚类
  1. 隐马尔可夫模型
  • 14.1 隐马尔可夫模型概念
  • 14.2 概率计算问题
  • 14.3 学习问题
  • 14.4 预测问题
  1. 强化学习
  • 15.1 任务与奖赏
  • 15.2 k-摇臂赌博机
### 关于《机器学习周志华西瓜课后习题解析 #### 不同章节的习题特点与解决方法 对于不同章节中的具体题目,解决方案各有侧重。例如,在第九章中提到的内容涉及较为复杂的模型评估和技术应用[^1]。 #### 构建不剪枝决策树的具体案例分析 当处理特定的数据集如西瓜数据3.0α时,构建不剪枝决策树的过程不同于简单的决策桩。这里需要考虑更多的节点分裂标准以及如何全面地利用特征属性进行划分,而不是仅仅依赖单一条件做出判断[^2]。 #### 计算假设空间大小的方法探讨 针对西瓜分类问题中的假设空间计算,如果采用最多包含k个合取式的析合范式,则可以通过组合数学的方式估计可能存在的假设数量。这涉及到对给定条件下所有潜在模式的理解和量化[^3]。 #### 版本空间的概念及其求解过程说明 版本空间是指既能够解释已有观察又尽可能泛化到未见实例的一组假设集合。通过移除那些无法匹配已知正例或反而能解释负例的候选方案,可以逐步缩小这一范围直至找到最优解[^4]。 ```python def calculate_hypothesis_space_size(attributes, values_per_attribute): """ Calculate the size of hypothesis space given attributes and their possible value counts. :param attributes: List of attribute names :param values_per_attribute: Dictionary mapping each attribute to its number of distinct values :return: Total number of hypotheses in the space """ total_combinations = 1 for attr in attributes: if attr in values_per_attribute: total_combinations *= (values_per_attribute[attr] + 1) # Include wildcard '*' return total_combinations - 1 # Exclude completely wild card case '* * ...' # Example usage based on provided information from reference [3] attributes = ["色泽", "根蒂", "敲声"] value_counts = {"色泽": 2, "根蒂": 2, "敲声": 2} print(f"The estimated number of possible hypotheses is {calculate_hypothesis_space_size(attributes, value_counts)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值