- 数据管理能力成熟度评估模型
- data management capability maturity assessment model
- 全国信标委大数据标准工作组研发
- 国家工信部信软司主导
- 多家企业和研究机构共同组成
- 整合了标准规范、管理方法论、评估模型等多方面内容的综合框架
- 适用于组织进行数据管理时的规划、设计和评估
- 适用于针对信息系统建设状况的指导、监督和检查的依据
- 适用于组织和机构对数据管理能力成熟度进行评估
- 给出数据管理能力成熟度评估模型以及相应成熟度等级
- DCMM优势
- 权威性:官方组织发布
- 特点:由数据战略指引数据管理,由数据标准提供操作指导
- 特色:数据治理沟通
- 重点:提出数据应用,在模型中评估数据应用能力,数据治理的本质是为数据应用服务,核心目标是让数据产生价值,这个特点保证DCMM没有离开数据价值只注重数据治理
- DCMM能力等级划分
- 初始级
- 数据需求的管理主要是在项目级体现
- 没有统一的管理流程
- 被动式管理
- 具体特征
- 组织在制定战略决策是,未获得充分的数据支持
- 没有正式的数据规划、数据架构设计、数据管理组织和流程等
- 业务系统各自管理自己的数据,各业务系统之间的数据存在不一致,组织未意识到数据管理或数据质量的重要性
- 数据管理仅根据项目实施的周期进行,无法核算数据维护、管理的成本
- 受管理级
- 组织意识到数据是资产
- 根据管理策略要求制定管理流程
- 指定相关人员进行初步管理
- 具体特征
- 意识到数据的重要性,并制定部分数据管理规范,设置了相关岗位
- 意识到数据质量和数据孤岛是一个重要的管理问题,但目前没有解决方案
- 组织进行了初步的数据集成工作,尝试整合各业务系统的数据,设计了相关数据模型和管理岗位
- 进行了一些重要数据的文档工作,对重要数据的安全、风险等方面设计相关管理措施
- 稳健级
- 数据已经被当做实现组织绩效目标的重要资产
- 在组织层面制订了系列的标准化管理流程促进数据管理规范化
- 具体特征
- 意识到数据的价值,在组织内部建立了数据管理的规章制度
- 数据的管理以及应用能结合组织的的业务战略、经营管理需求以及外部监管需求
- 建立了相关数据管理组织、管理流程,能推动组织内各部门按流程开展工作
- 组织在日常决策、业务开展过程中能获得数据支持,明显提升工作效率
- 参与行业数据管理相关培训,具备数据管理人员
- 量化管理级
- 数据被认为是获取竞争优势的重要资源
- 数据管理的效率可以量化分析和监控
- 具体特征
- 组织层面认识到了数据是组织的战略资产,了解数据在流程优化、绩效提升等方面的重要作用,在制定组织业务战略的时候可获得相关数据的支持
- 在组织层面建立了可量化的评估指标体系,可准确测量数据管理流程的效率并及时优化
- 参与国家、行业等相关标准的制定工作
- 组织内部定期开展数据管理、应用相关的培训工作
- 在数据管理、应用的过程中充分借鉴了行业最佳案例以及国家标准、行业标准等外部资源,促进组织本身的数据管理、应用的提升
- 优化级
- 数据被认为是组织生存的基础
- 相关管理流程能够实时优化
- 能够在行业内进行最佳实践的分享
- 具体特征
- 组织将数据作为核心竞争力,利用数据创造更多的价值和提升改善组织的效率
- 主导国家、行业等相关标准的制定工作
- 能将组织自身数据管理能力建设的经验作为行业最佳案例进行推广
- 初始级
- DCMM评估内容
- 依据
- 组织
- 制度
- 流程
- 技术
- 组织数据管理八大管理域
- 数据管理是指对数据的质量和安全两个属性进行管理,需要从数据生存周期设计管理方式,数据战略会对数据管理进行目标输入,数据管理最终成果会输出到数据应用中,数据治理会对数据管理提供组织保障,数据架构和数据标准会对数据管理提供技术保障
- 管理域下有多个过程域(能力项),过程域中需要有过程域概述、过程描述、过程目标、能力等级要求
- 过程域概述:解释过程域是什么
- 过程描述:过程域如何实施
- 过程目标:过程域达到什么目标
- 组织
- 数据战略(组织数据管理的最高总则,为组织的数据管理提供方向指引)
- 目的
- 组织开展数据管理工作的愿景、目的、目标和原则
- 目标与过程监控
- 结果评估与战略优化
- 战略的构成
- 战略目的
- 预期的结果,是制定和实施战略的出发点和归宿点
- 战略方针
- 指导全局的方针,指导行动的纲领和制定战略计划的基本依据
- 战略力量
- 物质基础和支柱
- 战略措施
- 准备和进行战争而实行的具有全局意义的战略保障,采取的各种全局性的切实可行的方法和步骤
- 战略目的
- 能力项
- 数据战略规划:确定数据管理愿景、目标等高阶内容
- 所有利益相关者之间达成共识的结果,从宏观和微观两个层面确定开展数据管理及应用的动因,并综合反映数据提供方和消费方的需求
- 过程描述
- 识别利益相关者:明确利益相关者的需求
- 数据战略需求评估:组织对业务和信息化现状进行评估,了解业务和信息化对数据的需求
- 数据战略制定:包括但不限于愿景陈述(数据管理原则、目的和目标)、规划范围(重要业务领域、数据范围和数据管理优先权)、所选择的数据管理模型和建设方法、当前数据管理存在的主要差距、管理层及其责任和利益相关者名单、编制数据管理规划的管理方法、持续改进的路线图
- 数据战略发布:以文件、网络、邮件等形式发布审批后的数据战略
- 数据战略修订:根据业务战略、信息化发展等方面的要求,定期进行数据战略修订
- 过程目标和输出物
- 建立、维护数据管理战略
- 针对所有业务领域,在整个数据治理过程中维护数据管理战略
- 给予数据的业务价值和数据管理目标,识别利益相关者,分析各项数据管理工作的优先权
- 制定、监控和评估后续计划,用于指导数据管理规划实施
- 常见数据战略规划模型
- 波特价值链分析模型
- 波特五力分析模型
- 鱼骨图分析法
- PEST分析模型
- SWOT分析模型
- 能力等级标准
- 初始级
- 在项目建设过程中反映了数据管理的目标和范围
- 受管理级
- 识别数据战略的利益相关者(提供相关者清单或给出相关者群体)
- 数据战略的制定能遵循相关管理流程
- 维护了数据战略和业务战略之间的关联关系
- 稳健级
- 制定能反映整个组织业务发展需求的数据战略
- 制定数据战略的管理制度和流程,明确利益相关者的职责,规范数据战略的管理过程
- 根据组织制定的数据战略提供资源保障
- 将组织的数据管理战略形成文件并按组织定义的标准过程进行维护、审查和公告
- 编制数据战略的优化路线图,指导数据工作的开展
- 定期修订已发布的数据战略
- 量化管理级
- 对组织数据战略的管理过程进行量化分析并及时优化
- 能量化分析数据战略路线图的落实情况,并持续优化数据战略
- 优化级
- 数据战略可有效提升企业竞争力
- 在业界分享最佳实践,成为行业标杆
- 初始级
- 数据战略实施:确定任务蓝图及优先级顺序
- 组织完成数据战略规划并逐渐实现数据职能框架的过程
- 在实施过程中评估组织数据管理和数据应用的现状,确定与愿景、目标之间的差距
- 依据数据职能框架制定阶段性数据任务目标,并确定实施步骤
- 过程描述
- 评估准则:建立数据战略规划实施评估标准,规范评估过程和方法
- 现状评估:对组织当前数据战略落实情况进行分析,评估各项工作开展情况
- 评估差距:根据现状评估结果与组织数据战略规划进行对比,分析存在的差异
- 实施路径:利益相关者结合组织的共同目标和实际商业价值进行数据职能任务优先级排序
- 保障计划:依据实施路径,制定开展各项活动所需的预算
- 任务实施:根据任务开展工作
- 过程监控:依据实施路径,及时对实施过程进行监控
- 过程目标和输出物
- 检查数据战略落实情况,定期对实施情况评估
- 对现状和发展目标进行对比,分析存在差距,明确发展方向
- 推动战略实施,根据存在的差距,结合组织的共同目标和实际商业价值,对数据职能任务优先级排序,提供资源和资金保障,推动战略实施
- 能力等级标准
- 初始级
- 在具体项目中反映数据管理的任务、优先级安排等内容
- 受管理级
- 在部门或数据职能领域内(数据战略实施范围),结合实际情况评估关键数据职能与愿景、目标的差距
- 在部门或数据职能领域内,结合业务因素建立并遵循数据管理项目的优先级
- 在部门或数据职能领域内,制定数据任务目标,对所有任务全面分析,确定实施方向
- 在部门或数据职能领域内,针对具体管理任务建立目标完成情况的评估准则
- 稳健级
- 针对数据职能任务,建立系统完整的评估准则
- 在组织范围内全面评估实际情况,确定各项数据职能与愿景、目标的差距
- 制定数据战略推进工作报告模板,定期发布,使利益相关者了解数据战略实施情况和存在的问题
- 结合组织业务战略,利用业务价值驱动方法评估数据管理和数据应用工作的优先级,制定是时计划并提供资源、资金等方面的保障
- 跟踪评估各项数据任务的实施情况,并结合工作进展情况调整更新实施计划
- 量化管理级
- 可应用量化分析的方式对数据战略进展情况进行分析
- 积累大量的数据用以提升数据任务进度规划的准确性
- 数据管理工作任务的安排能及时满足业务发展的需要,建立了规范的优先级排序方法
- 优化级
- 在业界分享最佳实践,成为行业标杆
- 初始级
- 数据战略评估:对落地执行过程进行评价并执行和调整战略
- 建立对应的业务案例和投资模型,在整个数据战略实施过程中跟踪进度,做好记录供审计和评估使用
- 业务案例
- 目的:通过分析投资项目的财务影响,帮助企业管理层做出投资决策(做/不做/怎么做)
- 生成过程
- 阅读基本假设
- 基本假设(针对所有业务案例都需要进行的假设)
- 关键绩效指标
- 主要收入和利润增长假设
- 所得税率
- 折现率
- 本业务案例基本假设(针对于本业务的假设)
- 业务增长假设
- 敏感度分析假设(环境影响)
- 财务分析中其他假设
- 基本假设(针对所有业务案例都需要进行的假设)
- 预测收益
- 预测投资
- 预测运行成本
- 敏感度分析(环境影响)
- 项目总结与建议
- 阅读基本假设
- 过程描述
- 建立任务效益评估模型:从实践、成本、效益等方面建立数据战略相关任务的效益评估模型
- 建立业务案例:建立了基本的用例模型、项目计划、初始风险评估和项目描述.能确定数据管理和数据应用相关任务(项目)的范围、活动、期望的价值以及合理的成本收益分析
- 建立投资模型:作为数据职能项目投资分析的基础性理论,投资模型确保在充分考虑成木和收益的前提下对所需资本合理分配,投资模型要满足不同业务的信息科技需求,以及对应的数据职能内容,同时要广泛沟通以保障对业务或技术的前瞻性支持,并符合相关的监管及合规性要求
- 阶段评估:在数据工作开展过程中.定期从业务价值、经济效益等维度对已取得的成果进行效益评估
- 过程目标和输出物
- 建立数据职能项目的业务案例,符合组织目标和业务驱动要求,帮助项目获取执行层面的支持,同时为投资模型提供参考
- 建立一个或一组可持续的投资模型,满足组织文化和业务案例需求
- 遵循投资模型,进行合理的成本收益分析,同时项目资金支持反映业务目标和组织优先级考虑
- 对业务案例、资金支持方法及活动的记录、跟踪、审计和实施效果评估
- 能力等级标准
- 初始级
- 在项目范围内建立数据职能项目和活动的业务案例
- 通过基本的成本——收益分析方法对数据管理项目进行投资预算管理
- 受管理级
- 在单个部门或数据职能领域内,根据业务需求建立业务案例和任务效益评估模型
- 在单个部门或数据职能领域内,建立业务案例的标准决策过程,并明确利益相关者在其中的职责
- 在单个部门或数据职能领域内,利益相关者参与制定数据管理和数据应用项目的投资模型
- 在单个部门或数据职能领域内,根据任务效益评估模型对相关的数据任务进行了评估
- 稳健级
- 在组织范围内,根据标准工作流程和方法建立数据管理和应用的相关业务案例
- 在组织范围内,制定了数据任务效益评估模型以及相关的管理办法
- 在组织范围内,业务案例的制定能获得高层管理者、业务部门的支持和参与
- 在组织范围内,通过成本——收益准则指导数据职能项目的实施优先级安排
- 在组织范围内,通过任务相依评估模型对数据战略实施任务进行评估和管理,并纳入审计范围
- 量化管理级
- 构建专门的数据管理和数据应用TCO方法,衡量评估数据管理实施切入点和基础实施的变化,并调整资金预算
- 使用统计方法或其他量化方法分析数据管理的成本评估标准
- 使用统计方法或其他量化方法分析资金预算满足组织目标的有效性和准确性
- 优化级
- 建立并发布数据管理资金预算蓝皮书
- 在业界分享最佳实践,成为行业标杆
- 初始级
- 数据战略规划:确定数据管理愿景、目标等高阶内容
- 目的
- 数据生存周期
- 目的
- 实现数据战略确定的数据工作的愿景和目标
- 实现数据资产价值
- 在数据全生命周期中实施管理
- 确保数据能够满足数据应用和数据管理需求
- 从宏观计划、概念设计到物理实现
- 从获取、处理到应用、运维、退役
- 能力项
- 数据需求
- 组织对业务运营情况、经营分析和战略决策过程中产生和使用的数据分类、含义、分布和流转的描述
- 数据需求管理过程识别所需的数据,确定数据需求优先级并以文档的形式对数据需求进行记录和管理
- 过程描述
- 建立数据需求管理制度:明确组织数据需求的管理组织、制度和流程
- 收集数据需求:需求人员通过各方式分析数据应用场景,并识别数据应用场景中的数据分类、数据名称、数据含义、数据创建、数据使用、数据展示、数据质量、数据安全、数据保留等需求,编写数据需求文档
- 评审数据需求:组织人员对数据需求文档进行评审,评审关注各项数据需求是否与业务目标、业务需求保持一致,数据需求是否使用已定义的业务术语、数据项、参考数据等数据标准,相关方对数据需求是否达成共识
- 更新数据管理标准:对于已有数据管理标准中尚未覆盖的数据需求以及经评审后达成-致需要变更数据标准的,由数据管理人员根据相关流程更新数据标准,保证数据标准与实际数据需求的一致性
- 集中管理数据需求:各方数据用户的数据需求应集中由数据管理人员进行收集和管理,确保需求的汇总分析和历史回顾
- 过程目标及输出物
- 建立数据需求管理制度,统一管理各类数据需求
- 数据相关方对数据需求有一致的理解,能满足业务的需求
- 各类数据需求得到梳理和定义
- 数据的命名、定义和标识遵循组织发布的相关标准
- 能力等级标准
- 初始级
- 在项目层面,相关方评审和审批数据需求
- 在项目层面,建立了收集、记录、评估、验证数据需求并确定优先级的方法,将数据需求与业务目标、应用需求匹配一致
- 受管理级
- 业务部门建立了数据需求管理制度,对数据需求进行了管理
- 数据需求管理依托信息化项目管理流程运行
- 数据需求与业务流程、数据模型之间的匹配关系得到管理和维护
- 各业务部门自行开展数据溯源的工作
- 稳健级
- 建立了组织级的数据需求收集、验证和汇总的标准流程,并遵循和执行
- 数据需求管理流程与信息化项目管理流程协调一致
- 根据业务、管理等方面的要求制定了数据需求的优先级
- 明确了数据需求管理的模板和数据需求描述的内容
- 评审了数据需求、数据标准、数据架构之间的一致性,并对数据标准和数据架构等内容进行了完善
- 记录了产生数据的业务流程,并管理和维护业务流程与数据需求的匹配关系
- 集中处理各部门的数据需求,统一开展数据寻源的工作
- 量化管理级
- 定义并应用量化指标,衡量数据需求类型、需求数量以及需求管理流程的有效性
- 组织对数据需求管理流程开展了持续改善措施
- 覆盖外部商业机构对本组织的数据需求,促进基于数据的商业模式创新
- 优化级
- 在业界分享最佳实践,成为行业标杆
- 初始级
- 数据设计和开发
- 设计、实施数据解决方案,提供数据应用,持续满足组织的数据需求的过程
- 数据解决方案包括数据库结构、数据采集、数据整合、数据交换、数据访问、数据产品(报表、用户视图)等
- 过程描述
- 设计数据解决方案:设计数据解决方案包括概要设计和详细设计,其设计内容主要是面向具体的应用系统设计逻辑数据模型、物理数据模型、物理数据库、数据产品、数据访向服务数据整合服务等,从而形成满足数据需求的解决方案
- 数据准备:梳理组织的各类数据,明确数据提供方,制定数据提供方案
- 数据解决方案的质量管理:数据解决方案设计应满足数据用户的业务需求,同时也应满足数据的可用性、安全性、准确性、及时性等数据管理需求,因此需要进行数据模型和设计的质量管理,主要内容包括开发数据模型和设计标准、评审概念模型、逻辑模型和物理模型的设计以及管理和整合数据模型版本变更
- 实施数据解决方案:通过质量评审的数据解决方案进入实施阶段,主要内容包括开发和测试数据库、建立和维护测试数据、数据迁移和转换、开发和测试数据产品、数据访问服务、数据整合服务、验证数据需求等
- 过程目标及输出物
- 设计满足数据需求的数据结构和解决方案
- 实施并维护满足数据需求的解决方案
- 确保解决方案与数据架构和数据标准的一致性
- 确保数据的完整性、安全性、可用性和可维护性
- 能力等级标准
- 初始级
- 在项目层面设计、实施数据解决方案,并根据项目要求进行了管理
- 受管理级
- 单个业务部门建立了数据设计和开发的流程并遵从
- 单个业务部门建立了数据解决方案设计和开发规范,指导约束数据设计和开发
- 建立了数据解决方案设计的质量标准并遵从
- 数据解决方案设计和开发过程中加强了数据架构和标准方面的应用
- 各业务部门根据需要开展数据准备工作
- 稳健级
- 建立了组织级数据设计和开发标准流程并执行
- 建立了组织级数据解决方案设计、开发规范,指导约束各类数据设计和开发
- 建立了组织级数据解决方案的质量标准、安全标准并执行
- 应用级数据解决方案与组织级数据架构、数据标准、数据质量等协调一致
- 数据解决方案设计和开发过程中参考了权威数据源的设计,优化了数据集成关系并进行了评估
- 明确数据供需双方职责,统一开展数据准备工作
- 量化管理级
- 参考、评估并采用数据设计与开发的行业最佳实践
- 定义并应用量化指标,衡量数据设计与开发流程的有效性
- 组织对数据设计与开发流程开展了持续改善措施
- 初始级
- 数据需求
- 目的
- 数据战略(组织数据管理的最高总则,为组织的数据管理提供方向指引)
- 依据
DCMM数据管理能力成熟度评估模型
最新推荐文章于 2024-09-04 17:02:53 发布