DCMM(GBT36073-2018)数据管理能力成熟度评估模型解读
DCMM标准的核心点在于通过八个核心能力域和五个成熟度等级的划分,全面评估企业的数据管理能力,并为企业提供提升数据管理能力的路径和方法,从而推动企业在信息化、数字化、智能化方面的发展。
01、什么是DCMM
DCMM是国家标准《数据管理能力成熟度评估模型GB/T36073-2018》(Data management Capability Maturity Model)的英文简称,是我国在数据管理领域首个正式发布的国家标准。
02、DCMM标准内容
DCMM提炼出数据战略、数据治理、数据架构、数据应用、数据安全、数据质量、数据标准和数据生存周期8个核心能力域,细分为28个过程域和445条能力等级标准。
一、八个核心能力域
DCMM定义了八个核心能力域,这些能力域共同构成了评估模型的核心内容:
- 数据战略:关注企业如何制定和执行数据管理的长期策略,包括理解并应对数据带来的业务机会和挑战,以及设置数据管理目标。
- 数据治理:主要关注如何建立有效的数据管理组织架构,明确各角色和职责,以及实施适当的政策和程序来管理数据。
- 数据架构:关注如何设计、实施和维护企业的数据架构,包括数据的结构、关系、存储和访问方式等。
- 数据应用:主要关注如何有效地利用数据来支持企业的业务运营和决策,包括数据的分析、挖掘和应用等。
- 数据安全:关注如何保护数据免受未经授权的访问、泄露、损坏或丢失,以及如何处理与数据相关的安全风险和威胁。
- 数据质量:关注如何确保数据的准确性、一致性、完整性、可靠性和及时性,以及如何管理和控制数据质量。
- 数据标准:主要关注如何制定和实施数据管理相关的标准,包括数据格式、术语、编码等,以促进数据的共享和集成。
- 数据生存周期:关注如何管理和控制数据的生命周期,包括数据的创建、存储、访问、使用、修改、归档和销毁等。
二、成熟度等级划分
DCMM将数据管理能力成熟度划分为五个等级,自低向高依次为:
- 初始级(1级):数据需求的管理主要是在项目级体现,没有统一的管理流程,主要是被动式管理。
- 受管理级(2级):组织已经意识到数据的重要性,根据管理策略的要求制定了管理流程,指定相关人员进行初步管理。
- 稳健级(3级):数据已经被当作实现组织绩效目标的重要资产,在组织层面制定了系列的标准化管理流程促进数据管理的规范化。
- 量化管理级(4级):组织层面认识到数据是组织的战略资产,了解数据在流程优化、绩效提升等方面的重要作用,数据管理效率能够进行量化分析和监控。
- 优化级(5级):在业界分享最佳实践,成为行业标杆。
三、评估流程
DCMM的评估流程包括三个阶段:
- 评估准备阶段:被评估方参照DCMM标准建立、健全数据管理体系,内部运行开展自评估,也可以通过贯标咨询机构协助对标,并向第三方评估机构提交有效的申请材料。
- 正式评估阶段:评估机构受理评估申请后,组织现场评审并出具评估报告,给予评估等级的推荐意见,并报评估工作部备案。
- 结果评议阶段:评估工作部对评估机构报送的评估结果进行合规性审查,对于合规性审查中发现存在较大问题的评估结果有权驳回。对于评估机构推荐的优化级、量化管理级和优化级的评估结论,评估工作部需组织专家对评估结果进行评议。
DCMM评估过程有哪些方式?
- (1)制度层面。审查文件和记录:包括公司层面及部门层面的规章、制度、规范和管理规定等,以及公司在管理过程中的过程文档,如会议纪要、会签记录等。
- (2)平台工具层面。观察数据管理过程和活动:重点了解数据管理系统/平台/工具的相关功能和使用记录。
- (3)人员管理层面。人员访谈:对公司的规章制度执行以及数据管理平台使用情况进行核验,确认其实施过程与客观证据是否保持一致。
DCMM评估过程有哪些人参与?
数据战略和治理需要的是管理人员,其余6个能力域需要的是技术人员,从实际评估角度来说,企业匹配人员一般在5-10个(数据管理者、数据使用者、数据架构师、数据治理专员、业务领域管理者、数据设计专员、领域数据管理专员、质量专员、企业数据安全专员 等等)。
企业如何开展贯标准备工作?
准备工作分为三个阶段:
- (1)差距分析:对照能力等级标准的相关要求,梳理本企业数据管理的相关制度、执行过程文档、数据管理平台和工具的相关资料,进行差距分析,制定建设提升工作计划。
- (2)能力建设:健全数据管理组织,完善数据管理制度体系,优化数据管理平台和工具,开展对标自评估。
- (3)量化评估:组建评估队伍,提交正式评估申请,开展第三方评估,获取评估结果和提升整改意见。
四、评估意义
DCMM评估对企业具有以下重要意义:
- 科学掌握数据管理方法:帮助企业科学有效地掌握数据管理方法,发现问题、找到差距,给出企业提高数据管理能力的路径。
- 提升内部管理:提高数据作为单位核心战略资源的地位,推动企业内部管理的提升。
- 提高人员技能:推动企业数据管理人才队伍建设,提高人员技能。
- 增强市场竞争力:提高企业市场竞争门槛,促进数据要素价值释放,使企业在数字经济时代更具竞争力。