文章目录
合并 K 个升序链表
⛅前言
大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏!
精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种类型的算法题目,包括但不限于数组、链表、树、字典树、图、排序、搜索、动态规划等等,并会提供详细的解题思路以及Java代码实现。如果你也想刷题,不断提升自己,就请加入我们吧!QQ群号:827302436。我们共同监督打卡,一起学习,一起进步。
博客主页💖:知识汲取者的博客
LeetCode热题100专栏🚀:LeetCode热题100
Gitee地址📁:知识汲取者 (aghp) - Gitee.com
Github地址📁:Chinafrfq · GitHub
题目来源📢:LeetCode 热题 100 - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台
PS:作者水平有限,如有错误或描述不当的地方,恳请及时告诉作者,作者将不胜感激
🔒题目
🔑题解
-
解法一:暴力
这个没有任何逻辑可言🤣,纯纯靠调用API,所以耗时较高,但是时间复杂度不是很高。相较而言,我感觉这个代码思路还是十分清晰易懂的,毕竟是自己写的
PS:从LeetCode热题100系列开始,截至目前为止,我已经遇到了三道困难题,从这三道题来看,发现困难题都有“取巧”的方法,但是一般“取巧”做出来的代码耗时或耗内存都比较高
import java.util.ArrayList; import java.util.Collections; import java.util.List; class ListNode { int val; ListNode next; ListNode() { } ListNode(int val) { this.val = val; } ListNode(int val, ListNode next) { this.val = val; this.next = next; } } /** * @author ghp * @title 括号生成 */ class Solution { public ListNode mergeKLists(ListNode[] lists) { // 判空 if (lists.length == 0){ return null; } int count = 0; for (int i = 0; i < lists.length; i++) { if (lists[i] == null){ count++; } } if (count == lists.length){ // lists不为空,但是lists中的链表都为空 return null; } // 将 lists 中所有的元素都转存到 list 集合中 List<Integer> list = new ArrayList<>(10); for (int i = 0; i < lists.length; i++) { ListNode tempNode = lists[i]; while (tempNode != null){ list.add(tempNode.val); tempNode = tempNode.next; } } // 对 list 进行排序(升序,值由低到高) Collections.sort(list); // 将 list 中所有的元素都转存到链表中 ListNode newNode = new ListNode(list.get(0)); ListNode t = newNode; for (int i = 1; i < list.size(); i++) { ListNode tempNode = new ListNode(list.get(i)); t.next = tempNode; t = t.next; } return newNode; } }
复杂度分析:
- 时间复杂度: O ( n ∗ k ) O(n*k) O(n∗k)
- 空间复杂度: O ( 1 ) O(1) O(1)
其中 n n n 为最长链表的长度,k为链表数组的长度
-
解法二:按顺序合并两个链表
这个解法是LeetCode官方提供的一种解法,时间复杂度比我提供的那种要高,耗时也高,唯一比解法一要好的就是内存占用少。解题思路也比较简单,使用一个链表来存储合并后的链表,然后两两合并
class Solution { public ListNode mergeKLists(ListNode[] lists) { ListNode ans = null; // 遍历所有链表,两两合并 for (int i = 0; i < lists.length; i++) { // 合并两个链表 ans = merge(ans, lists[i]); } return ans; } private ListNode merge(ListNode node1, ListNode node2) { // 尽量返回非空链表 if (node1 == null || node2 == null) { return node1 == null ? node2 : node1; } // 合并两个链表 ListNode i = node1; ListNode j = node2; ListNode head = new ListNode(); ListNode k = head; while (i != null && j != null) { if (i.val <= j.val) { // node1的节点值较小,则将node1的节点添加到head链表后 k.next = i; i = i.next; } else { // node2的节点值较小,则将node2的节点添加到head链表后 k.next = j; j = j.next; } k = k.next; } // 将还剩有节点的拼接到 head 末尾 k.next = i != null ? i : j; // 返回构建好的链表,注意不要将头节点返回 return head.next; } }
复杂度分析:
- 时间复杂度: O ( k 2 n ) O(k^2n) O(k2n)
- 空间复杂度: O ( 1 ) O(1) O(1)
其中 n n n 为最长链表的长度,k为链表数组的长度
-
解法三:分治+递归
说实话,我最先想到的其实是这种解法,但是最后没有写出来,最后才想出了解法一o((>ω< ))o(我还有待加强),这种方法思路也是挺简单的,相信只要学习过归并排序,都会想到这种思想。这种方法效率是三种解法中最高的
class ListNode { int val; ListNode next; ListNode() { } ListNode(int val) { this.val = val; } ListNode(int val, ListNode next) { this.val = val; this.next = next; } } /** * @author ghp * @title 括号生成 */ class Solution { public ListNode mergeKLists(ListNode[] lists) { // 划分数组 return partition(lists, 0, lists.length-1); } /** * 划分数组 * * @param lists * @param l 左侧子数组的起始索引 * @param r 右侧子数组的起始索引 * @return */ private ListNode partition(ListNode[] lists, int l, int r) { // 递归终止条件 if (l > r) { return null; } if (l == r) { return lists[l]; } int mid = (r - l) / 2 + l; // 划分左侧子数组 ListNode node1 = partition(lists, l, mid); // 划分右侧子数组 ListNode node2 = partition(lists, mid + 1, r); // 合并子数组 return merge(node1, node2); } private ListNode merge(ListNode node1, ListNode node2) { // 尽量返回非空链表 if (node1 == null || node2 == null) { return node1 == null ? node2 : node1; } // 合并两个链表 ListNode i = node1; ListNode j = node2; ListNode head = new ListNode(); ListNode k = head; while (i != null && j != null) { if (i.val <= j.val) { // node1的节点值较小,则将node1的节点添加到head链表后 k.next = i; i = i.next; } else { // node2的节点值较小,则将node2的节点添加到head链表后 k.next = j; j = j.next; } k = k.next; } // 将还剩有节点的拼接到 head 末尾 k.next = i != null ? i : j; // 返回构建好的链表,注意不要将头节点返回 return head.next; } }
复杂度分析:
- 时间复杂度: O ( k n ∗ l o g k ) O(kn*logk) O(kn∗logk)
- 空间复杂度: O ( l o g k ) O(logk) O(logk)
其中 n n n 为最长链表的长度,k为链表数组的长度