经过信源编码和系统复接后生成的节目传送码流,通常需要通过某种传输媒 介才能到达用户接收机。通常情况下,编码码流并不能直接通过信道传输,必须经过信道编码后,使其变成适合在信道中传输的形式后再进行传输。
DVB-S的信道编码主要包括
- 扰码
- R-S编码
- 卷积交织
- 卷积编码
扰码
数字通信理论在设计通信系统时都是假设传输比特流中 0 和 1 的出现概率是等概的,实际中的通信系统的设计指标等首先也是以该假设为前提的。
但是TS(transport stream)码流经过编码后可能会出现连0或连1的情况,一方面破坏了系统设计的前提,另一方面连0或连1会使得比特时钟的提取变得困难,因此,为保证在任何情况下进入 DVB 传输系统的数据码流中"0"与"1"的概率都能基本相等,系统引入一个伪随机序列对TS码流进行扰乱处理,使得 0 和 1 的出现概率接近50%。
扰乱改变了原 TS 码流,因此在接收端对传输码流纠错解码后,还需 按逆过程对其进行解扰处理,以恢复原 TS 码流。
在接收端对接收到的码流逆编码后,就可以恢复原TS码流
原理
传送复用器输出的TS流帧结构如图所示:

第一个字节为同步字节,数值为47H。每8个包组成一个超帧,并将第一个包的同步字节反转,变为B8H,后面的7个包的同步字节不变。同步字节不参与扰码,其余字节参与扰码
伪随机二进制序列(PRBS)生成器的多项式应为:
P ( X ) = 1 + X 14 + X 15 P(X)=1+X^{14}+X^{15} P(X)=1+X14+X15
其扰码过程如图所示:

扰码输出如下图所示:

R-S编码
DVB-S中使用的外层纠错编码为R-S(204,188)码,编码效率 $ R_c=\frac{188}{204}=0.92 $ , 码字长度为8。
每个TS包独立进行R-S编码保护,生成一个R-S码字,R-S同步头就采用TS的包头,如此设计有以下好处:
- 当某个 R-S 码字在接 收端解码时出现无法纠正的错误时,误码集中在一个 TS 包中,不会影响到其它的TS 包,便于分接器进行差错指示
- 便于分接器提取 TS 包的同步,简化了 TS 包同步提取系统结构
R-S码字结构
编码原理
对于定义在 G F ( 2 m ) GF(2^m) GF(2m)的RS(n,k)码, n = 2 m − 1 n=2^m-1 n=2m−1 ,生成多项式取
g ( x ) = ∏ i = 1 i = n − k ( x + α i ) = x 2 t + g 2 t − 1 x 2 t − 1 + ⋯ + g 2 x 2 + g 1 x + g 0 g(x)=\prod_{i=1}^{i=n-k}(x+\alpha^{i})= x^{2t}+g_{2t-1}x^{2t-1}+\cdots+g_{2}x^{2}+g_{1}x+g_{0} g(x)=i=1∏i=n−k(x+αi)=x2t+g2t−1x2t−1+⋯+g2x2+g1x+g0
记 $ n-k=2t $ ,纠错能力为 t t t,就是说如果编码后的一组数据里面出现了错误的数据个数不大于 t,那么可以通过 n-k 个监督数据达到对错误数据纠正的目的
g ( x ) g(x) g(x)的系数属于 G F ( 2 m ) GF(2^m) GF(2m) ,生成矩阵 G 可表示为:
G = [ g 2 t g 2 t − 1 ⋯ g 1 g 0 0 ⋯ 0 0 g 2 t ⋯ g 2 g 1 g 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ g 2 t g 2 t − 1 g 2 t − 2 ⋯ g 0 ] G=\begin{bmatrix}\mathrm{g_{2t}}&\mathrm{g_{2t-1}}&\cdots&\mathrm{g_{1}}&\mathrm{g_{0}}&0&\cdots&0\\0&\mathrm{g_{2t}}&\cdots&\mathrm{g_{2}}&\mathrm{g_{1}}&\mathrm{g_{0}}&\cdots&0\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&\mathrm{g_{2t}}&\mathrm{g_{2t-1} }&\mathrm{g_{2t-2}}&\cdots&\mathrm{g_{0} }\end{bmatrix} G= g2t0⋮0g2t−1g2t⋮0⋯⋯⋱⋯g1g2⋮g2tg0g1⋮g2t−10g0⋮g2t−2⋯⋯⋱⋯00⋮g0
对矩阵 G 进行变换得到与其等价的矩阵 G_1 ,该矩阵由 k阶单位矩阵 $ \bold I $ 和 $k*(n-k) $ 阶的矩阵 $ \bold A $ 组成 ,满足
G
1
=
[
I
∣
A
]
=
[
1
0
⋯
0
a
1
,
1
a
1
,
2
⋯
a
1
,
n
−
k
0
1
⋯
0
a
2
,
1
a
2
,
2
⋯
a
2
,
n
−
k
⋮
⋮
⋱
⋮
⋮
⋮
⋱
⋮
0
0
⋯
1
a
k
,
1
g
k
,
2
⋯
a
k
,
n
−
k
]
G_1=[I|A]=\begin{bmatrix}1&0&\cdots&0&a_{1,1}&a_{1,2}&\cdots&a_{1,n-k}\\0&1&\cdots&0&a_{2,1}&a_{2,2}&\cdots&a_{2,n-k}\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&1&a_{k,1}&g_{k,2}&\cdots&a_{k,n-k}\end{bmatrix}
G1=[I∣A]=
10⋮001⋮0⋯⋯⋱⋯00⋮1a1,1a2,1⋮ak,1a1,2a2,2⋮gk,2⋯⋯⋱⋯a1,n−ka2,n−k⋮ak,n−k
编码结果可以表示为
C = U ⋅ G 1 = [ U ∣ U ⋅ A ] = [ U ∣ R ] C=U\cdot G_1=[U|U\cdot A]=[U|R] C=U⋅G1=[U∣U⋅A]=[U∣R]
其中矩阵 $ \bold R $ 有 n − k n-k n−k个监督符号,多项式表示为
r ( x ) = r n − k − 1 x n − k − 1 + ⋯ + r 2 x 2 + r 1 x + r 0 r(x)=r_{n-k-1}x^{n-k-1}+\cdots+r_2x^2+r_1x+r_0 r(x)=rn−k−1xn−k−1+⋯+r2x2+r1x+r0
因此经过R-S编码后的码多项式为
c ( x ) = u ( x ) x n − k + r ( x ) c(x)=u(x)x^{n-k}+r(x) c(x)=u(x)xn−k+r(x)
DVB-S使用的R-S生成多项式为
G
(
X
)
=
∐
15
(
X
+
λ
i
)
G(X)=\overset{15}{\operatorname*{\coprod}}(X+\lambda^i)
G(X)=∐15(X+λi)
其中 $ \lambda =02H $ ,为本原元,域生成多项式为
P
(
X
)
=
X
8
+
X
4
+
X
3
+
X
2
+
1
P(X)=X^8+X^4+X^3+X^2+1
P(X)=X8+X4+X3+X2+1
最小码距为17字节
R-S(204,188,T=8)码帧结构
卷积交织
在编码后加上卷积交织,使得数据的传送顺序按照一定的规律分散开,这样可以使信道中突发性干扰造成的错误字符也被分散开来。
DVB-S 中交织采用卷积交织的方式,其交织深度为 204/17=12 ,下图为交织和解码的原理图
它由FIFO组成,数据按行写入寄存器,按列读出。
交织过程如下:R-S 编码码字向第 0 到第 11 支路依次循环输入数据,每条支路每次输入一个字节,交织后的数据按相同的顺序从各支路中输出,每条支路每次输出一个字节。R-S 码字的同步头永远从第 0 支路,即无延时支路传送。这样交 织后的数据流依然保持了 R-S 码字的同步和长度
假设输入的数据为从小到大的自然数,输入的数据如下
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |
73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 |
85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 |
97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 |
109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 |
133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |
145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 |
157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 |
169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 |
193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 |
205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 |
217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 |
经过交织模块后可以得到如下输出:
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
61 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
109 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
121 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
133 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
157 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
181 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
193 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
205 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
217 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
因此,在卷积交织的输出序列中,同一个误码包的任意两个字节的最小距离为12字节,所以,R-S(204,188,T=8)编码加上卷积交织后纠错的最大字节长度为 $ 8\times12=96 $ ,大大提高系统的纠错能力。
卷积编码
DVB-S的内码编码采用收缩卷积编码,系统框图如下
中间的方框代表一个7位的移位寄存器,两个输出X、Y的生成多项式分别为
G
1
=
1
+
X
+
X
2
+
X
3
+
X
6
G
2
=
1
+
X
2
+
X
3
+
X
5
+
X
6
\begin{aligned}G_1&=1+X+X^2+X^3+X^6\\\\G_2&=1+X^2+X^3+X^5+X^6\end{aligned}
G1G2=1+X+X2+X3+X6=1+X2+X3+X5+X6
该系统每个clk输入1bit信息,有两个模2加法器输出2bit信息,且输出的信息和移位寄存器内的当前信息和前6个信息都有关系,因此常用(2,1,7)来表示该卷积码
QPSK
数字信号理论频谱带宽无限宽,要想无失真的传输数字信号,要在无限带宽信道中传输,而卫星系统的信道是带限信道,因此需要对卷积编码模块输出的信号进行成型滤波,使其与卫星信道匹配。
基带成型滤波器一方面要降低传输中需要的带宽,另一方面使码间串扰降至最低。理论上来说,如果随机数字码元流的重复周期为 Ts,只要通过带宽为π/Ts 的理想滤 波器后,在 n T s nTs nTs 时刻抽样,无码间干扰。由于理想LPF难以实现,因此选用升余弦滚降滤波器,传输函数为
的升余弦滚降滤波器满足要求
f N = 1 2 T s = R s 2 f_N=\frac{1}{2T_s}=\frac{R_s}{2} fN=2Ts1=2Rs为奈奎斯特频率
传输带宽 B r = 1 = α 2 T s H z B_r=\frac{1=\alpha}{2T_s}Hz Br=2Ts1=αHz
频带利用率 η = R s B r = 2 1 + α b i t / H z \eta=\frac{R_s}{B_r}=\frac{2}{1+\alpha}bit/Hz η=BrRs=1+α2bit/Hz
在DVB-S系统中滚降系数 α = 0.35 \alpha=0.35 α=0.35
下图为QPSK调制框图: