Rank–nullity theorem

The rank–nullity theorem is a theorem in linear algebra, which asserts that the dimension of the domain of a linear map is the sum of its rank (the dimension of its image) and its nullity (the dimension of its kernel).

在这里插入图片描述

Rank–nullity theorem

1 Stating the theorem

Let T : V → W {\displaystyle T:V\to W} T:VW be a linear transformation between two vector spaces where T {\displaystyle T} T's domain V {\displaystyle V} V is finite dimensional. Then
Rank ⁡ ( T )   +   Nullity ⁡ ( T )   =   dim ⁡ V , {\displaystyle \operatorname {Rank} (T)~+~\operatorname {Nullity} (T)~=~\dim V,} Rank(T) + Nullity(T) = dimV,
where
Rank ⁡ ( T )   : =   dim ⁡ ( Image ⁡ ( T ) )  and  Nullity ⁡ ( T )   : =   dim ⁡ ( Ker ⁡ ( T ) ) . {\displaystyle \operatorname {Rank} (T)~:=~\dim(\operatorname {Image} (T))\qquad {\text{ and }}\qquad \operatorname {Nullity} (T)~:=~\dim(\operatorname {Ker} (T)).} Rank(T) := dim(Image(T)) and Nullity(T) := dim(Ker(T)).

In other words,
dim ⁡ ( im ⁡ T ) + dim ⁡ ( ker ⁡ T ) = dim ⁡ ( domain ⁡ T ) . {\displaystyle \dim(\operatorname {im} T)+\dim(\ker T)=\dim(\operatorname {domain} T).} dim(imT)+dim(kerT)=dim(domainT).

This theorem can be refined via the splitting lemma to be a statement about an isomorphism of spaces, not just dimensions. Explicitly, since T T T induces an isomorphism from V / Ker ⁡ ( T ) {\displaystyle V/\operatorname {Ker} (T)} V/Ker(T) to Image ⁡ ( T ) , {\displaystyle \operatorname {Image} (T),} Image(T), the existence of a basis for V V V that extends any given basis of Ker ⁡ ( T ) {\displaystyle \operatorname {Ker} (T)} Ker(T) implies, via the splitting lemma, that Image ⁡ ( T ) ⊕ Ker ⁡ ( T ) ≅ V . {\displaystyle \operatorname {Image} (T)\oplus \operatorname {Ker} (T)\cong V.} Image(T)Ker(T)V. Taking dimensions, the rank–nullity theorem follows.

1.1 Matrices

Since Mat ⁡ m × n ( F ) ≅ Hom ⁡ ( F n , F m ) , {\displaystyle \operatorname {Mat} _{m\times n}(\mathbb {F} )\cong \operatorname {Hom} \left(\mathbb {F} ^{n},\mathbb {F} ^{m}\right),} Matm×n(F)Hom(Fn,Fm), one can represent linear maps as matrices. In the case of an m × n {\displaystyle m\times n} m×n matrix, the dimension of the domain is n , {\displaystyle n,} n, the number of columns in the matrix. Thus the rank–nullity theorem for a given matrix M ∈ Mat ⁡ m × n ( F ) {\displaystyle M\in \operatorname {Mat} _{m\times n}(\mathbb {F} )} MMatm×n(F) immediately becomes
Rank ⁡ ( M ) + Nullity ⁡ ( M ) = n . {\displaystyle \operatorname {Rank} (M)+\operatorname {Nullity} (M)=n.} Rank(M)+Nullity(M)=n.

2 Proofs

2.1 First proof

2.2 Second proof

3 Reformulations and generalizations

4 Citations

5 References

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值