Definition and Theorems of Chapter 3

Definition. Let V V V and W W W be vector spaces over the field F F F. A linear tranformation from V V V into W W W is a function T T T from V V V into W W W such that
T ( c α + β ) = c ( T α ) + T β , ∀ α , β ∈ V , ∀ c ∈ F T(c{\alpha}+{\beta})=c(T{\alpha})+T{\beta},\quad\forall {\alpha},{\beta}\in V,\forall c\in F T(cα+β)=c(Tα)+Tβ,α,βV,cF

Theorem 1. Let V V V be a finite-dimensional vector space over the field F F F and let { α 1 , … , α n } \{ {\alpha}_1,\dots,{\alpha}_n\} { α1,,αn} be an ordered basis for V V V. Let W W W be a vector space over the same field F F F and let { β 1 , … , β n } \{ {\beta}_1,\dots,{\beta}_n\} { β1,,βn} be any vectors in W W W. Then there is precisely one linear transformation T T T from V V V into W W W such that
T α j = β j , j = 1 , … , n T{\alpha}_j={\beta}_j,\qquad j=1,\dots,n Tαj=βj,j=1,,n

Definition. Let V V V and W W W be vector spaces over the field F F F and let T T T be a linear transformation from V V V into W W W. The null space of T T T is the set of all vectors α \alpha α in V V V such that T α = 0 T{\alpha}=0 Tα=0. If V V V is finite-dimensional, the rank of T T T is the dimension of the range of T T T and the nullity of T T T is the dimension of the null space of T T T.

Theorem 2. Let V V V and W W W be vector spaces over the field F F F and let T T T be a linear transformation from V V V into W W W. Suppose that V V V is finite-dimensional. Then
rank ( T ) + nullity ( T ) = dim ⁡ ( V ) \text{rank}(T)+\text{nullity}(T)=\dim(V) rank(T)+nullity(T)=dim(V)

Theorem 3. If A A A is an m × n m\times n m×n matrix with entries in the field F F F, then row rank ( A ) = column rank ( A ) \text{row rank}(A)=\text{column rank}(A) row rank(A)=column rank(A).

Theorem 4. Let V V V and W W W be vector spaces over the field F F F. Let T T T and U U U be linear transformations from V V V into W W W. The function ( T + U ) (T+U) (T+U) defined by
( T + U ) ( α ) = T α + U α (T+U)(\alpha)=T{\alpha}+U{\alpha} (T+U)(α)=Tα+Uα
is a linear transformation from V V V into W W W. If c c c is any element of F F F, the function ( c T ) (cT) (cT) defined by
( c T ) ( α ) = c ( T α ) (cT)(\alpha)=c(T{\alpha}) (cT)(α)=c(Tα)
is a linear transformation from V V V into W W W. The set of all linear transformations from V V V into W W W, together with the addition and scalar multiplication defined above, is a vector space over the field F F F.

Theorem 5. Let V V V be an n n n-dimensional vector space over the field F F F, and let W W W be an m m m-dimensional vector space over F F F. Then the space L ( V , W ) L(V,W) L(V,W) is finite-dimensional and has dimension m n mn mn.

Theorem 6. Let V , W , Z V,W,Z V,W,Z be vector spaces over the field F F F. Let T T T be a linear transformation from V V V into W W W and U U U a linear transformation from W W W into Z Z Z. Then the composed function U T UT UT defined by ( U T ) ( α ) = U ( T ( α ) ) (UT)({\alpha})=U(T(\alpha)) (UT)(α)=U(T(α)) is a linear transformation from V V V into Z Z Z.

Definition. If V V V is a vector space over the field F F F, a linear operator on V V V is a linear transformation from V V V into V V V.

Lemma. Let V V V be a vector space over the field F F F; let U , T 1 , T 2 U,T_1,T_2

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值